Skip to main content

Cyclodextrin Functionalized Graphene and Its Applications

  • Chapter
  • First Online:
Graphene Functionalization Strategies

Part of the book series: Carbon Nanostructures ((CARBON))

Abstract

Cyclodextrin (CD) is the general name for a series of cyclic oligosaccharides produced via glucotransferase by Bacillus. The inner cavity of cyclodextrin is hydrophobic, while the outer cavity is hydrophilic, which enables interactions with many organic or inorganic molecules through van der Waals forces and hydrophobic interactions. In this chapter, we summarized the incorporation of graphene with CD through different strategies and the resulting applications. Surface functionalization processes, including covalent interactions and noncovalent interactions, were discussed in detail. Then, the applications of surface-CD-functionalized graphene in drug delivery, chiral recognition, electrochemical sensing, and pollutant removal were summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agnihotri, N., Chowdhury, A.D., De, A.: Non-enzymatic electrochemical detection of cholesterol using β-cyclodextrin functionalized graphene. Biosens. Bioelectron. 63, 212–217 (2015)

    Article  CAS  Google Scholar 

  2. Alsbaiee, A., Smith, B.J., Xiao, L., Ling, Y., Helbling, D.E., Dichtel, W.R.: Rapid removal of organic micropollutants from water by a porous β-cyclodextrin polymer. Nature 529, 190 (2016)

    Article  CAS  Google Scholar 

  3. Ates, S., Zor, E., Akin, I., Bingol, H., Alpaydin, S., Akgemci, E.G.: Discriminative sensing of DOPA enantiomers by cyclodextrin anchored graphene nanohybrids. Anal. Chim. Acta 970, 30–37 (2017)

    Article  CAS  Google Scholar 

  4. Bonnet, V., Gervaise, C., Djedaïni-Pilard, F., Furlan, A., Sarazin, C.: Cyclodextrin nanoassemblies: a promising tool for drug delivery. Drug Discov. Today 20, 1120–1126 (2015)

    Article  CAS  Google Scholar 

  5. Challa, R., Ahuja, A., Ali, J., Khar, R.: Cyclodextrins in drug delivery: an updated review. AAPS PharmSciTech 6, E329–E357 (2005)

    Article  Google Scholar 

  6. Chen, M., Meng, Y., Zhang, W., Zhou, J., Xie, J., Diao, G.: β-cyclodextrin polymer functionalized reduced-graphene oxide: application for electrochemical determination imidacloprid. Electrochim. Acta 108, 1–9 (2013)

    Article  CAS  Google Scholar 

  7. Cui, L., Wang, Y., Gao, L., Hu, L., Wei, Q., Du, B.: Removal of Hg (II) from aqueous solution by resin loaded magnetic β-cyclodextrin bead and graphene oxide sheet: synthesis, adsorption mechanism and separation properties. J. Colloid Interface Sci. 456, 42–49 (2015)

    Article  CAS  Google Scholar 

  8. Dong, H., Li, Y., Yu, J., Song, Y., Cai, X., Liu, J., Zhang, J., Ewing, R.C., Shi, D.: A versatile multicomponent assembly via β-cyclodextrin host–guest chemistry on graphene for biomedical applications. Small 9, 446–456 (2013)

    Article  CAS  Google Scholar 

  9. Dong, S., Bi, Q., Qiao, C., Sun, Y., Zhang, X., Lu, X., Zhao, L.: Electrochemical sensor for discrimination tyrosine enantiomers using graphene quantum dots and β-cyclodextrins composites. Talanta 173, 94–100 (2017)

    Article  CAS  Google Scholar 

  10. Einafshar, E., Asl, A.H., Nia, A.H., Mohammadi, M., Malekzadeh, A., Ramezani, M.: New cyclodextrin-based nanocarriers for drug delivery and phototherapy using an irinotecan metabolite. Carbohydr. Polym. 194, 103–110 (2018)

    Article  CAS  Google Scholar 

  11. Fan, L., Luo, C., Sun, M., Qiu, H.: Synthesis of graphene oxide decorated with magnetic cyclodextrin for fast chromium removal. J. Mater. Chem. 22, 24577–24583 (2012)

    Article  CAS  Google Scholar 

  12. Fan, L., Luo, C., Sun, M., Qiu, H., Li, X.: Synthesis of magnetic β-cyclodextrin–chitosan/graphene oxide as nanoadsorbent and its application in dye adsorption and removal. Colloids Surf. B 103, 601–607 (2013)

    Article  CAS  Google Scholar 

  13. Feng, W., Liu, C., Lu, S., Zhang, C., Zhu, X., Liang, Y., Nan, J.: Electrochemical chiral recognition of tryptophan using a glassy carbon electrode modified with β-cyclodextrin and graphene. Microchim. Acta 181, 501–509 (2014)

    Article  CAS  Google Scholar 

  14. Fritea, L., le Goff, A., Putaux, J.-L., Tertis, M., Cristea, C., Săndulescu, R., Cosnier, S.: Design of a reduced-graphene-oxide composite electrode from an electropolymerizable graphene aqueous dispersion using a cyclodextrin-pyrrole monomer. Application to dopamine biosensing. Electrochim. Acta 178, 108–112 (2015)

    Article  CAS  Google Scholar 

  15. Fu, L., Lai, G., Yu, A.: Preparation of β-cyclodextrin functionalized reduced graphene oxide: application for electrochemical determination of paracetamol. RSC Adv. 5, 76973–76978 (2015)

    Article  CAS  Google Scholar 

  16. Gandhi, M.R., Vasudevan, S., Shibayama, A., Yamada, M.: Graphene and graphene-based composites: a rising star in water purification—a comprehensive overview. ChemistrySelect 1, 4358–4385 (2016)

    Article  CAS  Google Scholar 

  17. Gao, J., Guo, Z., Su, F., Gao, L., Pang, X., Cao, W., Du, B., Wei, Q.: Ultrasensitive electrochemical immunoassay for CEA through host–guest interaction of β-cyclodextrin functionalized graphene and Cu@Ag core–shell nanoparticles with adamantine-modified antibody. Biosens. Bioelectron. 63, 465–471 (2015)

    Article  CAS  Google Scholar 

  18. Guo, Y., Chen, Y., Zhao, Q., Shuang, S., Dong, C.: Electrochemical sensor for ultrasensitive determination of doxorubicin and methotrexate based on cyclodextrin-graphene hybrid nanosheets. Electroanalysis 23, 2400–2407 (2011)

    Article  CAS  Google Scholar 

  19. Guo, Y., Guo, S., Li, J., Wang, E., Dong, S.: Cyclodextrin–graphene hybrid nanosheets as enhanced sensing platform for ultrasensitive determination of carbendazim. Talanta 84, 60–64 (2011)

    Article  CAS  Google Scholar 

  20. Guo, Y., Guo, S., Ren, J., Zhai, Y., Dong, S., Wang, E.: Cyclodextrin functionalized graphene nanosheets with high supramolecular recognition capability: synthesis and host–guest inclusion for enhanced electrochemical performance. ACS Nano 4, 4001–4010 (2010)

    Article  CAS  Google Scholar 

  21. Halpern, J.M., Gormley, C.A., Keech, M.A., von Recum, H.A.: Thermomechanical properties, antibiotic release, and bioactivity of a sterilized cyclodextrin drug delivery system. J. Mater. Chem. B 2, 2764–2772 (2014)

    Article  CAS  Google Scholar 

  22. Harada, A., Hashidzume, A.: Cyclodextrin-based chemo- and pH-responsive polymer systems for pharmaceutical and biomedical applications. In: Chemoresponsive Materials (2015)

    Google Scholar 

  23. Harada, A., Takashima, Y., Nakahata, M.: Supramolecular polymeric materials via cyclodextrin–guest interactions. Acc. Chem. Res. 47, 2128–2140 (2014)

    Article  CAS  Google Scholar 

  24. He, Y., Chen, D., Xiao, G.: Hydroxypropyl-β-cyclodextrin functionalized graphene oxide nanospheres as unmodified paclitaxel carriers. Asian J. Chem. 26, 4232 (2014)

    Article  CAS  Google Scholar 

  25. Hu, X.-J., Liu, Y.-G., Wang, H., Zeng, G.-M., Hu, X., Guo, Y.-M., Li, T.-T., Chen, A.-W., Jiang, L.-H., Guo, F.-Y.: Adsorption of copper by magnetic graphene oxide-supported β-cyclodextrin: effects of pH, ionic strength, background electrolytes, and citric acid. Chem. Eng. Res. Des. 93, 675–683 (2015)

    Article  CAS  Google Scholar 

  26. Huang, H., Ying, Y., Peng, X.: Graphene oxide nanosheet: an emerging star material for novel separation membranes. J. Mater. Chem. A 2, 13772–13782 (2014)

    Article  CAS  Google Scholar 

  27. Jin, Z., Nackashi, D., Lu, W., Kittrell, C., Tour, J.M.: Decoration, migration, and aggregation of palladium nanoparticles on graphene sheets. Chem. Mater. 22, 5695–5699 (2010)

    Article  CAS  Google Scholar 

  28. Li, L., Fan, L., Sun, M., Qiu, H., Li, X., Duan, H., Luo, C.: Adsorbent for chromium removal based on graphene oxide functionalized with magnetic cyclodextrin–chitosan. Colloids Surf., B 107, 76–83 (2013)

    Article  CAS  Google Scholar 

  29. Li, L., Fan, L., Sun, M., Qiu, H., Li, X., Duan, H., Luo, C.: Adsorbent for hydroquinone removal based on graphene oxide functionalized with magnetic cyclodextrin–chitosan. Int. J. Biol. Macromol. 58, 169–175 (2013)

    Article  CAS  Google Scholar 

  30. Li, Z.-Y., Akhtar, M.S., Kuk, J.H., Kong, B.-S., Yang, O.-B.: Graphene application as a counter electrode material for dye-sensitized solar cell. Mater. Lett. 86, 96–99 (2012)

    Article  CAS  Google Scholar 

  31. Li, Z., Chen, J., Yang, J., Su, Y., Fan, X., Wu, Y., Yu, C., Wang, Z.L.: β-cyclodextrin enhanced triboelectrification for self-powered phenol detection and electrochemical degradation. Energy Environ. Sci. 8, 887–896 (2015)

    Article  Google Scholar 

  32. Li, Z., Zhang, L., Huang, X., Ye, L., Lin, S.: Shape-controlled synthesis of Pt nanoparticles via integration of graphene and β-cyclodextrin and using as a noval electrocatalyst for methanol oxidation. Electrochim. Acta 121, 215–222 (2014)

    Article  CAS  Google Scholar 

  33. Liang, R.-P., Liu, C.-M., Meng, X.-Y., Wang, J.-W., Qiu, J.-D.: A novel open-tubular capillary electrochromatography using β-cyclodextrin functionalized graphene oxide-magnetic nanocomposites as tunable stationary phase. J. Chromatogr. A 1266, 95–102 (2012)

    Article  CAS  Google Scholar 

  34. Lin, Y., Zhou, J., Tang, J., Tang, W.: Cyclodextrin clicked chiral stationary phases with functionalities-tuned enantioseparations in high performance liquid chromatography. J. Chromatogr. A 1406, 342–346 (2015)

    Article  CAS  Google Scholar 

  35. Liu, J., Chen, G., Jiang, M.: Supramolecular hybrid hydrogels from noncovalently functionalized graphene with block copolymers. Macromolecules 44, 7682–7691 (2011)

    Article  CAS  Google Scholar 

  36. Liu, J., Liu, G., Liu, W.: Preparation of water-soluble β-cyclodextrin/poly (acrylic acid)/graphene oxide nanocomposites as new adsorbents to remove cationic dyes from aqueous solutions. Chem. Eng. J. 257, 299–308 (2014)

    Article  CAS  Google Scholar 

  37. Liu, K., Wei, J., Wang, C.: Sensitive detection of rutin based on β-cyclodextrin@chemically reduced graphene/Nafion composite film. Electrochim. Acta 56, 5189–5194 (2011)

    Article  CAS  Google Scholar 

  38. Liu, W., Li, C., Gu, Y., Tang, L., Zhang, Z., Yang, M.: One-step synthesis of β-cyclodextrin functionalized graphene/Ag nanocomposite and its application in sensitive determination of 4-nitrophenol. Electroanalysis 25, 2367–2376 (2013)

    CAS  Google Scholar 

  39. Liu, Z., Robinson, J.T., Sun, X., Dai, H.: PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J. Am. Chem. Soc. 130, 10876–10877 (2008)

    Article  CAS  Google Scholar 

  40. Liu, Z., Zhang, A., Guo, Y., Dong, C.: Electrochemical sensor for ultrasensitive determination of isoquercitrin and baicalin based on DM-β-cyclodextrin functionalized graphene nanosheets. Biosens. Bioelectron. 58, 242–248 (2014)

    Article  CAS  Google Scholar 

  41. Lu, D., Lin, S., Wang, L., Shi, X., Wang, C., Zhang, Y.: Synthesis of cyclodextrin-reduced graphene oxide hybrid nanosheets for sensitivity enhanced electrochemical determination of diethylstilbestrol. Electrochim. Acta 85, 131–138 (2012)

    Article  CAS  Google Scholar 

  42. Lv, M., Wang, X., Li, J., Yang, X., Zhang, C.A., Yang, J., Hu, H.: Cyclodextrin-reduced graphene oxide hybrid nanosheets for the simultaneous determination of lead(II) and cadmium(II) using square wave anodic stripping voltammetry. Electrochim. Acta 108, 412–420 (2013)

    Article  CAS  Google Scholar 

  43. Menestrina, F., Ronco, N.R., Romero, L.M., Castells, C.B.: Enantioseparation of polar pesticides on chiral capillary columns based on permethyl-β-cyclodextrin in matrices of different polarities. Microchem. J. 140, 52–59 (2018)

    Article  CAS  Google Scholar 

  44. Mikuma, T., Iwata, Y.T., Miyaguchi, H., Kuwayama, K., Tsujikawa, K., Kanamori, T., Kanazawa, H., Inoue, H.: Approaching over 10 000-fold sensitivity increase in chiral capillary electrophoresis: cation-selective exhaustive injection and sweeping cyclodextrin-modified micellar electrokinetic chromatography. Electrophoresis 37, 2970–2976 (2016)

    Article  CAS  Google Scholar 

  45. Mondal, A., Jana, N.R.: Fluorescent detection of cholesterol using [small beta]-cyclodextrin functionalized graphene. Chem. Commun. 48, 7316–7318 (2012)

    Article  CAS  Google Scholar 

  46. Ntoutoume, G.M.N., Granet, R., Mbakidi, J.P., Brégier, F., Léger, D.Y., Fidanzi-Dugas, C., Lequart, V., Joly, N., Liagre, B., Chaleix, V.: Development of curcumin–cyclodextrin/cellulose nanocrystals complexes: new anticancer drug delivery systems. Bioorg. Med. Chem. Lett. 26, 941–945 (2016)

    Google Scholar 

  47. Ogoshi, T., Ichihara, Y., Yamagishi, T.-A., Nakamoto, Y.: Supramolecular polymer networks from hybrid between graphene oxide and per-6-amino-β-cyclodextrin. Chem. Commun. 46, 6087–6089 (2010)

    Article  CAS  Google Scholar 

  48. Ou, J., Zhu, Y., Kong, Y., Ma, J.: Graphene quantum dots/β-cyclodextrin nanocomposites: a novel electrochemical chiral interface for tryptophan isomer recognition. Electrochem. Commun. 60, 60–63 (2015)

    Article  CAS  Google Scholar 

  49. Pham, T.S.H., Fu, L., Mahon, P., Lai, G., Yu, A.: Fabrication of β-cyclodextrin-functionalized reduced graphene oxide and its application for electrocatalytic detection of carbendazim. Electrocatalysis 7, 411–419 (2016)

    Article  CAS  Google Scholar 

  50. Quinn, M.D.J., Wang, T., Al Kobaisi, M., Craig, V.S.J., Notley, S.M.: PEO-PPO-PEO surfactant exfoliated graphene cyclodextrin drug carriers for photoresponsive release. Mater. Chem. Phys. 205, 154–163 (2018)

    Article  CAS  Google Scholar 

  51. Réti-Nagy, K., Malanga, M., Fenyvesi, É., Szente, L., Vámosi, G., Váradi, J., Bácskay, I., Fehér, P., Ujhelyi, Z., Róka, E.: Endocytosis of fluorescent cyclodextrins by intestinal Caco-2 cells and its role in paclitaxel drug delivery. Int. J. Pharm. 496, 509–517 (2015)

    Article  CAS  Google Scholar 

  52. Řezanka, P., Navrátilová, K., Řezanka, M., Král, V., Sýkora, D.: Application of cyclodextrins in chiral capillary electrophoresis. Electrophoresis 35, 2701–2721 (2014)

    Article  CAS  Google Scholar 

  53. Schmarr, H.-G., Mathes, M., Wall, K., Metzner, F., Fraefel, M.: Enantiodifferentiation of whisky and cognac lactones using gas chromatography with different cyclodextrin chiral stationary phases. J. Chromatogr. A 1516, 135–141 (2017)

    Article  CAS  Google Scholar 

  54. Schmidt, B.V., Hetzer, M., Ritter, H., Barner-Kowollik, C.: Complex macromolecular architecture design via cyclodextrin host/guest complexes. Prog. Polym. Sci. 39, 235–249 (2014)

    Article  CAS  Google Scholar 

  55. Shih, C.-J., Lin, S., Strano, M.S., Blankschtein, D.: Understanding the stabilization of liquid-phase-exfoliated graphene in polar solvents: molecular dynamics simulations and kinetic theory of colloid aggregation. J. Am. Chem. Soc. 132, 14638–14648 (2010)

    Article  CAS  Google Scholar 

  56. Siriviriyanun, A., Tsai, Y.-J., Voon, S.H., Kiew, S.F., Imae, T., Kiew, L.V., Looi, C.Y., Wong, W.F., Lee, H.B., Chung, L.Y.: Cyclodextrin- and dendrimer-conjugated graphene oxide as a nanocarrier for the delivery of selected chemotherapeutic and photosensitizing agents. Mater. Sci. Eng., C 89, 307–315 (2018)

    Article  CAS  Google Scholar 

  57. Song, J., Yang, C., Ma, J., Han, Q., Ran, P., Fu, Y.: Voltammetric chiral discrimination of tryptophan using a multilayer nanocomposite with implemented amino-modified β-cyclodextrin as recognition element. Microchim. Acta 185, 230 (2018)

    Article  CAS  Google Scholar 

  58. Song, W., Hu, J., Zhao, Y., Shao, D., Li, J.: Efficient removal of cobalt from aqueous solution using β-cyclodextrin modified graphene oxide. RSC Adv. 3, 9514–9521 (2013)

    Article  CAS  Google Scholar 

  59. Song, W., Shao, D., Lu, S., Wang, X.: Simultaneous removal of uranium and humic acid by cyclodextrin modified graphene oxide nanosheets. Sci. China Chem. 57, 1291–1299 (2014)

    Article  CAS  Google Scholar 

  60. Song, Y., Qu, K., Zhao, C., Ren, J., Qu, X.: Graphene oxide: intrinsic peroxidase catalytic activity and its application to glucose detection. Adv. Mater. 22, 2206–2210 (2010)

    Article  CAS  Google Scholar 

  61. Szejtli, J.: Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 98, 1743–1754 (1998)

    Article  CAS  Google Scholar 

  62. Szeman, J., Fenyvesi, E., Szejtli, J., Ueda, H., Machida, Y., Nagai, T.: Water soluble cyclodextrin polymers: their interaction with drugs. J. Incl. Phenom. 5, 427–431 (1987)

    Article  CAS  Google Scholar 

  63. Tan, J., Meng, N., Fan, Y., Su, Y., Zhang, M., Xiao, Y., Zhou, N.: Hydroxypropyl-β-cyclodextrin–graphene oxide conjugates: carriers for anti-cancer drugs. Mater. Sci. Eng. C 61, 681–687 (2016)

    Article  CAS  Google Scholar 

  64. Tan, L., Zhou, K.-G., Zhang, Y.-H., Wang, H.-X., Wang, X.-D., Guo, Y.-F., Zhang, H.-L.: Nanomolar detection of dopamine in the presence of ascorbic acid at β-cyclodextrin/graphene nanocomposite platform. Electrochem. Commun. 12, 557–560 (2010)

    Article  CAS  Google Scholar 

  65. Tian, X., Cheng, C., Yuan, H., Du, J., Xiao, D., Xie, S., Choi, M.M.F.: Simultaneous determination of l-ascorbic acid, dopamine and uric acid with gold nanoparticles–β-cyclodextrin–graphene-modified electrode by square wave voltammetry. Talanta 93, 79–85 (2012)

    Article  CAS  Google Scholar 

  66. Upadhyay, S.S., Kalambate, P.K., Srivastava, A.K.: Enantioselective analysis of moxifloxacin hydrochloride enantiomers with graphene-β-cyclodextrin-nanocomposite modified carbon paste electrode using adsorptive stripping differential pulse voltammetry. Electrochim. Acta 248, 258–269 (2017)

    Article  CAS  Google Scholar 

  67. Wang, C., Li, B., Niu, W., Hong, S., Saif, B., Wang, S., Dong, C., Shuang, S.: β-Cyclodextrin modified graphene oxide–magnetic nanocomposite for targeted delivery and pH-sensitive release of stereoisomeric anti-cancer drugs. RSC Adv. 5, 89299–89308 (2015)

    Article  CAS  Google Scholar 

  68. Wang, D., Liu, L., Jiang, X., Yu, J., Chen, X.: Adsorption and removal of malachite green from aqueous solution using magnetic β-cyclodextrin-graphene oxide nanocomposites as adsorbents. Colloids Surf. A 466, 166–173 (2015)

    Article  CAS  Google Scholar 

  69. Wang, D., Liu, L., Jiang, X., Yu, J., Chen, X., Chen, X.: Adsorbent for p-phenylenediamine adsorption and removal based on graphene oxide functionalized with magnetic cyclodextrin. Appl. Surf. Sci. 329, 197–205 (2015)

    Article  CAS  Google Scholar 

  70. Wang, H., Liu, Y.-G., Zeng, G.-M., Hu, X.-J., Hu, X., Li, T.-T., Li, H.-Y., Wang, Y.-Q., Jiang, L.-H.: Grafting of β-cyclodextrin to magnetic graphene oxide via ethylenediamine and application for Cr(VI) removal. Carbohydr. Polym. 113, 166–173 (2014)

    Article  CAS  Google Scholar 

  71. Wang, X., Li, X., Luo, C., Sun, M., Li, L., Duan, H.: Ultrasensitive molecularly imprinted electrochemical sensor based on magnetism graphene oxide/β-cyclodextrin/Au nanoparticles composites for chrysoidine analysis. Electrochim. Acta 130, 519–525 (2014)

    Article  CAS  Google Scholar 

  72. Wang, Y., Li, Y., Tang, L., Lu, J., Li, J.: Application of graphene-modified electrode for selective detection of dopamine. Electrochem. Commun. 11, 889–892 (2009)

    Article  CAS  Google Scholar 

  73. Wang, Y., Shao, Y., Matson, D.W., Li, J., Lin, Y.: Nitrogen-doped graphene and its application in electrochemical biosensing. ACS Nano 4, 1790–1798 (2010)

    Article  CAS  Google Scholar 

  74. Wei, G., Dong, R., Wang, D., Feng, L., Dong, S., Song, A., Hao, J.: Functional materials from the covalent modification of reduced graphene oxide and β-cyclodextrin as a drug delivery carrier. New J. Chem. 38, 140–145 (2014)

    Article  CAS  Google Scholar 

  75. Wei, M., Tian, D., Liu, S., Zheng, X., Duan, S., Zhou, C.: β-Cyclodextrin functionalized graphene material: a novel electrochemical sensor for simultaneous determination of 2-chlorophenol and 3-chlorophenol. Sens. Actuators B Chem. 195, 452–458 (2014)

    Article  CAS  Google Scholar 

  76. Wu, S., Lan, X., Cui, L., Zhang, L., Tao, S., Wang, H., Han, M., Liu, Z., Meng, C.: Application of graphene for preconcentration and highly sensitive stripping voltammetric analysis of organophosphate pesticide. Anal. Chim. Acta 699, 170–176 (2011)

    Article  CAS  Google Scholar 

  77. Xu, C., Wang, J., Wan, L., Lin, J., Wang, X.: Microwave-assisted covalent modification of graphene nanosheets with hydroxypropyl-β-cyclodextrin and its electrochemical detection of phenolic organic pollutants. J. Mater. Chem. 21, 10463–10471 (2011)

    Article  CAS  Google Scholar 

  78. Xu, J., Wang, Q., Xuan, C., Xia, Q., Lin, X., Fu, Y.: Chiral recognition of tryptophan enantiomers based on β-cyclodextrin-platinum nanoparticles/graphene nanohybrids modified electrode. Electroanalysis 28, 868–873 (2016)

    Article  CAS  Google Scholar 

  79. Xue, Q., Liu, Z., Guo, Y., Guo, S.: Cyclodextrin functionalized graphene–gold nanoparticle hybrids with strong supramolecular capability for electrochemical thrombin aptasensor. Biosens. Bioelectron. 68, 429–436 (2015)

    Article  CAS  Google Scholar 

  80. Yang, S.-T., Chang, Y., Wang, H., Liu, G., Chen, S., Wang, Y., Liu, Y., Cao, A.: Folding/aggregation of graphene oxide and its application in Cu2+ removal. J. Colloid Interface Sci. 351, 122–127 (2010)

    Article  CAS  Google Scholar 

  81. Yang, Y., Zhang, Y.M., Chen, Y., Zhao, D., Chen, J.T., Liu, Y.: Construction of a graphene oxide based noncovalent multiple nanosupramolecular assembly as a scaffold for drug delivery. Chem. A Eur. J. 18, 4208–4215 (2012)

    Article  CAS  Google Scholar 

  82. Yao, X., Tan, T.T.Y., Wang, Y.: Thiol–ene click chemistry derived cationic cyclodextrin chiral stationary phase and its enhanced separation performance in liquid chromatography. J. Chromatogr. A 1326, 80–88 (2014)

    Article  CAS  Google Scholar 

  83. Ye, X., Du, Y., Lu, D., Wang, C.: Fabrication of β-cyclodextrin-coated poly (diallyldimethylammonium chloride)-functionalized graphene composite film modified glassy carbon-rotating disk electrode and its application for simultaneous electrochemical determination colorants of sunset yellow and tartrazine. Anal. Chim. Acta 779, 22–34 (2013)

    Article  CAS  Google Scholar 

  84. Yi, Y., Zhu, G., Wu, X., Wang, K.: Highly sensitive and simultaneous electrochemical determination of 2-aminophenol and 4-aminophenol based on poly(l-arginine)-β-cyclodextrin/carbon nanotubes@graphene nanoribbons modified electrode. Biosens. Bioelectron. 77, 353–358 (2016)

    Article  CAS  Google Scholar 

  85. Zaidi, S.A.: Facile and efficient electrochemical enantiomer recognition of phenylalanine using β-cyclodextrin immobilized on reduced graphene oxide. Biosens. Bioelectron. 94, 714–718 (2017)

    Article  CAS  Google Scholar 

  86. Zeng, L., Li, Q., Tang, D., Chen, G., Wei, M.: Metal platinum-wrapped mesoporous carbon for sensitive electrochemical immunosensing based on cyclodextrin functionalized graphene nanosheets. Electrochim. Acta 68, 158–165 (2012)

    Article  CAS  Google Scholar 

  87. Zhang, X., Wu, L., Zhou, J., Zhang, X., Chen, J.: A new ratiometric electrochemical sensor for sensitive detection of bisphenol A based on poly-β-cyclodextrin/electroreduced graphene modified glassy carbon electrode. J. Electroanal. Chem. 742, 97–103 (2015)

    Article  CAS  Google Scholar 

  88. Zhang, Y.-M., Cao, Y., Yang, Y., Chen, J.-T., Liu, Y.: A small-sized graphene oxide supramolecular assembly for targeted delivery of camptothecin. Chem. Commun. 50, 13066–13069 (2014)

    Article  CAS  Google Scholar 

  89. Zhang, Y., Yuan, R., Chai, Y., Li, W., Zhong, X., Zhong, H.: Simultaneous voltammetric determination for DA, AA and NO2 based on graphene/poly-cyclodextrin/MWCNTs nanocomposite platform. Biosens. Bioelectron. 26, 3977–3980 (2011)

    Article  CAS  Google Scholar 

  90. Zhang, Z., Gu, S., Ding, Y., Shen, M., Jiang, L.: Mild and novel electrochemical preparation of β-cyclodextrin/graphene nanocomposite film for super-sensitive sensing of quercetin. Biosens. Bioelectron. 57, 239–244 (2014)

    Article  CAS  Google Scholar 

  91. Zhao, H., Ji, X., Wang, B., Wang, N., Li, X., Ni, R., Ren, J.: An ultra-sensitive acetylcholinesterase biosensor based on reduced graphene oxide-Au nanoparticles-β-cyclodextrin/Prussian blue-chitosan nanocomposites for organophosphorus pesticides detection. Biosens. Bioelectron. 65, 23–30 (2015)

    Article  CAS  Google Scholar 

  92. Zhou, J., Yang, B., Tang, J., Tang, W.: Cationic cyclodextrin clicked chiral stationary phase for versatile enantioseparations in high-performance liquid chromatography. J. Chromatogr. A 1467, 169–177 (2016)

    Article  CAS  Google Scholar 

  93. Zor, E., Bingol, H., Ramanaviciene, A., Ramanavicius, A., Ersoz, M.: An electrochemical and computational study for discrimination of d- and l-cystine by reduced graphene oxide/β-cyclodextrin. Analyst 140, 313–321 (2015)

    Article  CAS  Google Scholar 

  94. Zu, S.-Z., Han, B.-H.: Aqueous dispersion of graphene sheets stabilized by pluronic copolymers: formation of supramolecular hydrogel. J. Phys. Chem. C 113, 13651–13657 (2009)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Fu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fu, L. (2019). Cyclodextrin Functionalized Graphene and Its Applications. In: Khan, A., Jawaid, M., Neppolian, B., Asiri, A. (eds) Graphene Functionalization Strategies. Carbon Nanostructures. Springer, Singapore. https://doi.org/10.1007/978-981-32-9057-0_8

Download citation

Publish with us

Policies and ethics