Skip to main content

Electrochemical Detection of Dopamine in the Presence of Uric Acid Using Graphene Oxide Modified Electrode as Highly Sensitive and Selective Sensors

  • Chapter
  • First Online:
Graphene Functionalization Strategies

Part of the book series: Carbon Nanostructures ((CARBON))

Abstract

Graphene is a very advantageous material with its excellent electronic properties as well as its physical properties. The use of graphene and its derivatives in addition to polymers is very suitable for applications such as flexible devices, functional nanocomposites, and sensors. Graphene with a 2D network has been an important material due to its excellent physicochemical values (excellent conductivity, functionalization, mass production ease, high surface area, and high mechanical strength). In this study, graphene oxide based glassy carbon electrode (GO/GCE) was used for the simultaneous detection of dopamine (DA) and uric acid (UA) in the presence of chemically synthesized the graphene oxide (GO). To define the uric acid (UA) and dopamine (DA) levels simultaneously and separately, measurements were obtained by cyclic voltammetry (CV). Accordingly, it has been found that dopamine and uric acid can be measured simultaneously with these sensors in biological samples and are hoped to be used in future applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang, R., Di, Jin G., Chen, D., Hu, X.Y.: Simultaneous electrochemical determination of dopamine, ascorbic acid and uric acid using poly(acid chrome blue K) modified glassy carbon electrode. Sens. Actuat. B Chem. 138, 174–181 (2009). https://doi.org/10.1016/j.snb.2008.12.043

    Article  CAS  Google Scholar 

  2. Reyes, S., Fu, Y., Double, K.L., et al.: Trophic factors differentiate dopamine neurons vulnerable to Parkinson’s disease. Neurobiol. Aging 34, 873–886 (2013). https://doi.org/10.1016/j.neurobiolaging.2012.07.019

    Article  CAS  Google Scholar 

  3. Zen, J.M., Chen, P.J.: A selective voltammetric method for uric acid and dopamine detection using clay-modified electrodes. Anal. Chem. 69, 5087–5093 (1997). https://doi.org/10.1021/ac9703562

    Article  CAS  Google Scholar 

  4. Alwarappan, S., Butcher, K.S.A., Wong, D.K.Y.: Evaluation of hydrogenated physically small carbon electrodes in resisting fouling during voltammetric detection of dopamine. Sens. Actuat. B Chem. 128, 299–305 (2007). https://doi.org/10.1016/j.snb.2007.06.016

    Article  CAS  Google Scholar 

  5. Mao, Y., Bao, Y., Gan, S., et al.: Electrochemical sensor for dopamine based on a novel graphene-molecular imprinted polymers composite recognition element. Biosens. Bioelectron. 28, 291–297 (2011). https://doi.org/10.1016/j.bios.2011.07.034

    Article  CAS  Google Scholar 

  6. Sun, C.L., Lee, H.H., Yang, J.M., Wu, C.C.: The simultaneous electrochemical detection of ascorbic acid, dopamine, and uric acid using graphene/size-selected Pt nanocomposites. Biosens. Bioelectron. 26, 3450–3455 (2011). https://doi.org/10.1016/j.bios.2011.01.023

    Article  CAS  Google Scholar 

  7. Habibi, B., Jahanbakhshi, M., Pournaghi-Azar, M.H.: Differential pulse voltammetric simultaneous determination of acetaminophen and ascorbic acid using single-walled carbon nanotube-modified carbon-ceramic electrode. Anal. Biochem. (2011). https://doi.org/10.1016/j.ab.2011.01.005

    Article  CAS  Google Scholar 

  8. Raoof, J.B., Kiani, A., Ojani, R., et al.: Simultaneous voltammetric determination of ascorbic acid and dopamine at the surface of electrodes modified with self-assembled gold nanoparticle films. J. Solid State Electrochem. 14, 1171–1176 (2010). https://doi.org/10.1007/s10008-009-0917-z

    Article  CAS  Google Scholar 

  9. Zhou, C., Li, S., Zhu, W., et al.: A sensor of a polyoxometalate and Au–Pd alloy for simultaneously detection of dopamine and ascorbic acid. Electrochim. Acta 113, 454–463 (2013). https://doi.org/10.1016/J.ELECTACTA.2013.09.109

    Article  CAS  Google Scholar 

  10. Fujishima, A., Rao, T.N., Popa, E., et al.: Electroanalysis of dopamine and NADH at conductive diamond electrodes. J. Electroanal. Chem. 473, 179–185 (1999). https://doi.org/10.1016/S0022-0728(99)00106-0

    Article  CAS  Google Scholar 

  11. Heien, M.L.A.V., Phillips, P.E.M., Stuber, G.D., et al.: Overoxidation of carbon-fiber microelectrodes enhances dopamine adsorption and increases sensitivity. Analyst 128, 1413–1419 (2003). https://doi.org/10.1039/b307024g

    Article  CAS  Google Scholar 

  12. Jiang, L., Liu, C., Jiang, L., et al.: A chitosan-multiwall carbon nanotube modified electrode for simultaneous detection of dopamine and ascorbic acid. Anal. Sci. 20, 1055–1059 (2004). https://doi.org/10.2116/analsci.20.1055

    Article  CAS  Google Scholar 

  13. Kim, Y.-R., Bong, S., Kang, Y.-J., et al.: Electrochemical detection of dopamine in the presence of ascorbic acid using graphene modified electrodes. Biosens. Bioelectron. 25, 2366–2369 (2010). https://doi.org/10.1016/J.BIOS.2010.02.031

    Article  CAS  Google Scholar 

  14. Li, J., Yang, J., Yang, Z., et al.: Graphene–Au nanoparticles nanocomposite film for selective electrochemical determination of dopamine. Anal. Methods 4, 1725 (2012). https://doi.org/10.1039/c2ay05926f

    Article  CAS  Google Scholar 

  15. Ramesh, P., Suresh, G.S., Sampath, S.: Selective determination of dopamine using unmodified, exfoliated graphite electrodes. J. Electroanal. Chem. 561, 173–180 (2004). https://doi.org/10.1016/j.jelechem.2003.08.002

    Article  CAS  Google Scholar 

  16. Ahn, M., Kim, J.: Electrochemical behavior of dopamine and ascorbic acid at dendritic Au rod surfaces: selective detection of dopamine in the presence of high concentration of ascorbic acid. J. Electroanal. Chem. 683, 75–79 (2012). https://doi.org/10.1016/j.jelechem.2012.08.012

    Article  CAS  Google Scholar 

  17. Cai, W., Lai, T., Du, H., Ye, J.: Electrochemical determination of ascorbic acid, dopamine and uric acid based on an exfoliated graphite paper electrode: a high performance flexible sensor. Sens. Actuat. B Chem. 193, 492–500 (2014). https://doi.org/10.1016/J.SNB.2013.12.004

    Article  CAS  Google Scholar 

  18. Deng, C., Chen, J., Wang, M., et al.: A novel and simple strategy for selective and sensitive determination of dopamine based on the boron-doped carbon nanotubes modified electrode. Biosens. Bioelectron. 24, 2091–2094 (2009). https://doi.org/10.1016/j.bios.2008.10.022

    Article  CAS  Google Scholar 

  19. Popa, E., Kubota, Y, Tryk, D.A., Fujishima, A.: Selective voltammetric and amperometric detection of uric acid with oxidized diamond film electrodes (2000). https://doi.org/10.1021/ac990862m

    Article  CAS  Google Scholar 

  20. Niu, L.M., Lian, K.Q., Shi, H.M., et al.: Characterization of an ultrasensitive biosensor based on a nano-Au/DNA/nano-Au/poly(SFR) composite and its application in the simultaneous determination of dopamine, uric acid, guanine, and adenine. Sens. Actuat. B Chem. 178, 10–18 (2013). https://doi.org/10.1016/j.snb.2012.12.015

    Article  CAS  Google Scholar 

  21. Raoof, J.B., Ojani, R., Baghayeri, M.: A selective sensor based on a glassy carbon electrode modified with carbon nanotubes and ruthenium oxide/hexacyanoferrate film for simultaneous determination of ascorbic acid, epinephrine and uric acid. Anal. Methods 3, 2367 (2011). https://doi.org/10.1039/c1ay05305a

    Article  CAS  Google Scholar 

  22. Wang, C., Yuan, R., Chai, Y., et al.: Simultaneous determination of ascorbic acid, dopamine, uric acid and tryptophan on gold nanoparticles/overoxidized-polyimidazole composite modified glassy carbon electrode. Anal. Chim. Acta 741, 15–20 (2012). https://doi.org/10.1016/j.aca.2012.06.045

    Article  CAS  Google Scholar 

  23. Alwarappan, S., Erdem, A., Liu, C., Li, C.-Z.: Probing the electrochemical properties of graphene nanosheets for biosensing applications. J. Phys. Chem. C 113, 8853–8857 (2009). https://doi.org/10.1021/jp9010313

    Article  CAS  Google Scholar 

  24. Zhang, Y., Pan, Y., Su, S., et al.: A novel functionalized single-wall carbon nanotube modified electrode and its application in determination of dopamine and uric acid in the presence of high concentrations of ascorbic acid. Electroanalysis 19, 1695–1701 (2007). https://doi.org/10.1002/elan.200703901

    Article  CAS  Google Scholar 

  25. Liu, M., Chen, Q., Lai, C., et al.: A double signal amplification platform for ultrasensitive and simultaneous detection of ascorbic acid, dopamine, uric acid and acetaminophen based on a nanocomposite of ferrocene thiolate stabilized Fe3O4@Au nanoparticles with graphene sheet. Biosens. Bioelectron. 48, 75–81 (2013). https://doi.org/10.1016/J.BIOS.2013.03.070

    Article  CAS  Google Scholar 

  26. Çelik, B., Başkaya, G., Sert, H., et al.: Monodisperse Pt(0)/DPA@GO nanoparticles as highly active catalysts for alcohol oxidation and dehydrogenation of DMAB. Int. J. Hydrogen Energy 41, 5661–5669 (2016). https://doi.org/10.1016/j.ijhydene.2016.02.061

    Article  CAS  Google Scholar 

  27. Erken, E., Yıldız, Y., Kilbaş, B., Şen, F.: Synthesis and characterization of nearly monodisperse Pt nanoparticles for C 1 to C 3 alcohol oxidation and dehydrogenation of dimethylamine-borane (DMAB). J. Nanosci. Nanotechnol. (2016). https://doi.org/10.1166/jnn.2016.11683

    Article  CAS  Google Scholar 

  28. Goksu, H., Zengin, N., Karaosman, A., Sen, F.: Highly active and reusable Pd/AlO(OH) nanoparticles for the suzuki cross-coupling reaction. Curr. Organocatalysis 5, 34–41 (2018). https://doi.org/10.2174/2213337205666180614114550

    Article  CAS  Google Scholar 

  29. Şahin, B., Aygün, A., Gündüz, H., et al.: Cytotoxic effects of platinum nanoparticles obtained from pomegranate extract by the green synthesis method on the MCF-7 cell line. Colloids Surf. B 163, 119–124 (2018). https://doi.org/10.1016/j.colsurfb.2017.12.042

    Article  CAS  Google Scholar 

  30. Şen, B., Aygün, A., Okyay, T.O., et al.: Monodisperse palladium nanoparticles assembled on graphene oxide with the high catalytic activity and reusability in the dehydrogenation of dimethylamine-borane. Int. J. Hydrogen Energy 2, 2–9 (2018). https://doi.org/10.1016/j.ijhydene.2018.03.175

    Article  CAS  Google Scholar 

  31. Şen, B., Aygün, A., Şavk, A., et al.: Bimetallic palladium–iridium alloy nanoparticles as highly efficient and stable catalyst for the hydrogen evolution reaction. Int. J. Hydrogen Energy 43, 20183–20191 (2018). https://doi.org/10.1016/j.ijhydene.2018.07.081

    Article  CAS  Google Scholar 

  32. Sen, B., Kuzu, S., Demir, E., et al.: Polymer-graphene hybride decorated Pt nanoparticles as highly efficient and reusable catalyst for the dehydrogenation of dimethylamine–borane at room temperature. Int. J. Hydrogen Energy 42, 23284–23291 (2017). https://doi.org/10.1016/j.ijhydene.2017.05.112

    Article  CAS  Google Scholar 

  33. Sen, B., Şavk, A., Sen, F.: Highly efficient monodisperse Pt nanoparticles confined in the carbon black hybrid material for hydrogen liberation. J. Colloid Interface Sci. 520, 112–118 (2018). https://doi.org/10.1016/j.jcis.2018.03.004

    Article  CAS  Google Scholar 

  34. Şen, F., Gökaǧaç, G.: Different sized platinum nanoparticles supported on carbon: an XPS study on these methanol oxidation catalysts. J. Phys. Chem. C 111, 5715–5720 (2007). https://doi.org/10.1021/jp068381b

    Article  CAS  Google Scholar 

  35. Yıldız, Y., Erken, E., Pamuk, H., et al.: Monodisperse Pt nanoparticles assembled on reduced graphene oxide: highly efficient and reusable catalyst for methanol oxidation and dehydrocoupling of dimethylamine-borane (DMAB). J. Nanosci. Nanotechnol. 16, 5951–5958 (2016). https://doi.org/10.1166/jnn.2016.11710

    Article  CAS  Google Scholar 

  36. Yıldız, Y., Kuzu, S., Sen, B., et al.: Different ligand based monodispersed Pt nanoparticles decorated with rGO as highly active and reusable catalysts for the methanol oxidation. Int. J. Hydrogen Energy 42, 13061–13069 (2017). https://doi.org/10.1016/j.ijhydene.2017.03.230

    Article  CAS  Google Scholar 

  37. Chen, J., Zhang, J., Lin, X., et al.: Electrocatalytic oxidation and determination of dopamine in the presence of ascorbic acid and uric acid at a poly (4-(2-Pyridylazo)-Resorcinol) modified glassy carbon electrode. Electroanalysis 19, 612–615 (2007). https://doi.org/10.1002/elan.200603755

    Article  CAS  Google Scholar 

  38. Li, F., Chai, J., Yang, H., et al.: Synthesis of Pt/ionic liquid/graphene nanocomposite and its simultaneous determination of ascorbic acid and dopamine. Talanta 81, 1063–1068 (2010). https://doi.org/10.1016/j.talanta.2010.01.061

    Article  CAS  Google Scholar 

  39. Ayranci, R., Başkaya, G., Güzel, M., et al.: Carbon based nanomaterials for high performance optoelectrochemical systems. ChemistrySelect 2, 1548–1555 (2017). https://doi.org/10.1002/slct.201601632

    Article  CAS  Google Scholar 

  40. Çelik, B., Kuzu, S., Erken, E., et al.: Nearly monodisperse carbon nanotube furnished nanocatalysts as highly efficient and reusable catalyst for dehydrocoupling of DMAB and C1 to C3 alcohol oxidation. Int. J. Hydrogen Energy 41, 3093–3101 (2016). https://doi.org/10.1016/j.ijhydene.2015.12.138

    Article  CAS  Google Scholar 

  41. Eris, S., Daşdelen, Z., Sen, F.: Investigation of electrocatalytic activity and stability of Pt@f-VC catalyst prepared by in-situ synthesis for methanol electrooxidation. Int. J. Hydrogen Energy 43, 385–390 (2018). https://doi.org/10.1016/j.ijhydene.2017.11.063

    Article  CAS  Google Scholar 

  42. Göksu, H., Çelik, B., Yıldız, Y., et al.: Superior monodisperse CNT-supported CoPd (CoPd@CNT) nanoparticles for selective reduction of nitro compounds to primary amines with NaBH4 in aqueous medium. ChemistrySelect 1, 2366–2372 (2016). https://doi.org/10.1002/slct.201600509

    Article  CAS  Google Scholar 

  43. Günbatar, S., Aygun, A., Karataş, Y., et al.: Carbon-nanotube-based rhodium nanoparticles as highly-active catalyst for hydrolytic dehydrogenation of dimethylamineborane at room temperature. J. Colloid Interface Sci. 530, 321–327 (2018). https://doi.org/10.1016/j.jcis.2018.06.100

    Article  CAS  Google Scholar 

  44. Li, G., Yi, Q., Yang, X., et al.: Ni-Co-N doped honeycomb carbon nano-composites as cathodic catalysts of membrane-less direct alcohol fuel cell. Carbon N Y 140, 557–568 (2018). https://doi.org/10.1016/J.CARBON.2018.08.037

    Article  CAS  Google Scholar 

  45. Sert, H., Yıldız, Y., Okyay, T.O., et al.: Monodisperse Mw-Pt NPs@VC as highly efficient and reusable adsorbents for methylene blue removal. J. Clust. Sci. 27, 1953–1962 (2016). https://doi.org/10.1007/s10876-016-1054-3

    Article  CAS  Google Scholar 

  46. Sert, H., Yıldız, Y., Onal Okyay, T., et al.: Activated carbon furnished monodisperse Pt nanocomposites as a superior adsorbent for methylene blue removal from aqueous solutions. J. Nanosci. Nanotechnol. 17, 1–6 (2017). https://doi.org/10.1166/jnn.2017.13776

    Article  CAS  Google Scholar 

  47. Banks, C.E., Crossley, A., Salter, C., et al.: Carbon nanotubes contain metal impurities which are responsible for the “electrocatalysis” seen at some nanotube-modified electrodes. Angew. Chem. Int. Ed. 45, 2533–2537 (2006). https://doi.org/10.1002/anie.200600033

    Article  CAS  Google Scholar 

  48. Chen, D., Tang, L., Li, J.: Graphene-based materials in electrochemistry. Chem. Soc. Rev. 39, 3157–3180 (2010). https://doi.org/10.1039/b923596e

    Article  CAS  Google Scholar 

  49. Li, D., Müller, M.B., Gilje, S., et al.: Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 3, 101–105 (2008). https://doi.org/10.1038/nnano.2007.451

    Article  CAS  Google Scholar 

  50. Segal, M.: Selling graphene by the ton. Nat. Nanotechnol. 2009, 410 (2009)

    Google Scholar 

  51. Wang, C., Jiang, F., Yue, R., et al.: Enhanced photo-electrocatalytic performance of Pt/RGO/TiO2 on carbon fiber towards methanol oxidation in alkaline media. J. Solid State Electrochem. 18, 515–522 (2014). https://doi.org/10.1007/s10008-013-2282-1

    Article  CAS  Google Scholar 

  52. Demir, E., Savk, A., Sen, B., Sen, F.: A novel monodisperse metal nanoparticles anchored graphene oxide as counter electrode for dye-sensitized solar cells. Nano-Struct. Nano-Objects (2017). https://doi.org/10.1016/j.nanoso.2017.08.018

    Article  CAS  Google Scholar 

  53. Eris, S., Daşdelen, Z., Yıldız, Y., Sen, F.: Nanostructured polyaniline-rGO decorated platinum catalyst with enhanced activity and durability for methanol oxidation. Int. J. Hydrogen Energy 43, 1337–1343 (2018). https://doi.org/10.1016/j.ijhydene.2017.11.051

    Article  CAS  Google Scholar 

  54. Esirden, I., Erken, E., Kaya, M., Sen, F.: Monodisperse Pt NPs@rGO as highly efficient and reusable heterogeneous catalysts for the synthesis of 5-substituted 1H-tetrazole derivatives. Catal. Sci. Technol. 5, 4452–4457 (2015). https://doi.org/10.1039/c5cy00864f

    Article  CAS  Google Scholar 

  55. Gezer, B., Sert, H., Onal Okyay, T., et al.: Reduced graphene oxide (rGO) as highly effective material for the ultrasound assisted boric acid extraction from ulexite ore. Chem. Eng. Res. Des. 117, 542–548 (2017). https://doi.org/10.1016/j.cherd.2016.11.007

    Article  CAS  Google Scholar 

  56. Şen, B., Akdere, E.H., Şavk, A., et al.: A novel thiocarbamide functionalized graphene oxide supported bimetallic monodisperse Rh-Pt nanoparticles (RhPt/TC@GO NPs) for Knoevenagel condensation of aryl aldehydes together with malononitrile. Appl. Catal. B Environ. 225, 148–153 (2018). https://doi.org/10.1016/j.apcatb.2017.11.067

    Article  CAS  Google Scholar 

  57. Şen, B., Lolak, N., Paralı, Ö., et al.: Bimetallic PdRu/graphene oxide based catalysts for one-pot three-component synthesis of 2-amino-4H-chromene derivatives. Nano-Struct. Nano-Objects 12, 33–40 (2017). https://doi.org/10.1016/j.nanoso.2017.08.013

    Article  CAS  Google Scholar 

  58. Liu, Q., Zhu, X., Huo, Z., et al.: Electrochemical detection of dopamine in the presence of ascorbic acid using PVP/graphene modified electrodes. Talanta 97, 557–562 (2012). https://doi.org/10.1016/j.talanta.2012.05.013

    Article  CAS  Google Scholar 

  59. Sun, L., Fugetsu, B.: Mass production of graphene oxide from expanded graphite. Mater. Lett. 109, 207–210 (2013). https://doi.org/10.1016/J.MATLET.2013.07.072

    Article  CAS  Google Scholar 

  60. Tan, J.L., De Jesus, A.M., Chua, S.L., et al.: Preparation and characterization of palladium-nickel on graphene oxide support as anode catalyst for alkaline direct ethanol fuel cell. Appl. Catal. A Gen. 531, 29–35 (2017). https://doi.org/10.1016/j.apcata.2016.11.034

    Article  CAS  Google Scholar 

  61. Karteri, İ., Karataş, Ş., Yakuphanoğlu, F.: Electrical characterization of graphene oxide and organic dielectric layers based on thin film transistor. Appl. Surf. Sci. 318, 74–78 (2014). https://doi.org/10.1016/J.APSUSC.2014.01.013

    Article  CAS  Google Scholar 

  62. Ryu, S.H., Shanmugharaj, A.M.: Influence of long-chain alkylamine-modified graphene oxide on the crystallization, mechanical and electrical properties of isotactic polypropylene nanocomposites. Chem. Eng. J. 244, 552–560 (2014). https://doi.org/10.1016/J.CEJ.2014.01.101

    Article  CAS  Google Scholar 

  63. Zhou, Y., Bao, Q., Tang, L.A.L., et al.: Hydrothermal dehydration for the “green” reduction of exfoliated graphene oxide to graphene and demonstration of tunable optical limiting properties. Chem. Mater. 21, 2950–2956 (2009). https://doi.org/10.1021/cm9006603

    Article  CAS  Google Scholar 

  64. Arbuzov, A.A., Muradyan, V.E., Tarasov, B.P.: Synthesis of few-layer graphene sheets via chemical and thermal reduction of graphite oxide. Proc. Int. Conf. Nanomater. Appl. Prop. 1, 1–07 (2012)

    Google Scholar 

  65. Chen, W., Yan, L., Bangal, P.R.: Chemical reduction of graphene oxide to graphene by sulfur-containing compounds. J. Phys. Chem. C 114, 19885–19890 (2010). https://doi.org/10.1021/jp107131v

    Article  CAS  Google Scholar 

  66. Allen, M.J., Tung, V.C., Kaner, R.B.: Honeycomb carbon: a review of graphene. Chem. Rev. 110, 132–145 (2010). https://doi.org/10.1021/cr900070d

    Article  CAS  Google Scholar 

  67. Loryuenyong, V., Totepvimarn, K., Eimburanapravat, P., et al.: Preparation and characterization of reduced graphene oxide sheets via water-based exfoliation and reduction methods. Adv. Mater. Sci. Eng. 2013, 1–5 (2013). https://doi.org/10.1155/2013/923403

    Article  CAS  Google Scholar 

  68. Shahriary, L., Athawale, A.A.: Graphene oxide synthesized by using modified hummers approach (2014)

    Google Scholar 

  69. Gao, Y., Ma, D., Wang, C., et al.: Reduced graphene oxide as a catalyst for hydrogenation of nitrobenzene at room temperature. Chem. Commun. 47, 2432–2434 (2011). https://doi.org/10.1039/C0CC04420B

    Article  CAS  Google Scholar 

  70. Hanifah, M.F.R., Jaafar, J., Aziz, M., et al.: Synthesis of graphene oxide nanosheets via modified hummers’ method and its physicochemical properties. J. Teknol. 74 (2015). https://doi.org/10.11113/jt.v74.3555

  71. Karteri, İ., Karataş, Ş., Al-Ghamdi, A.A., Yakuphanoğlu, F.: The electrical characteristics of thin film transistors with graphene oxide and organic insulators. Synth. Met. 199, 241–245 (2015). https://doi.org/10.1016/J.SYNTHMET.2014.11.036

    Article  CAS  Google Scholar 

  72. Liao, K.-H., Mittal, A., Bose, S., et al.: Aqueous only route toward graphene from graphite oxide. ACS Nano 5, 1253–1258 (2011). https://doi.org/10.1021/nn1028967

    Article  CAS  Google Scholar 

  73. Bajaj, P., Sreekumar, T.V., Sen, K.: Structure development during dry-jet-wet spinning of acrylonitrile/vinyl acids and acrylonitrile/methyl acrylate copolymers. J. Appl. Polym. Sci. 86, 773–787 (2002). https://doi.org/10.1002/app.10973

    Article  CAS  Google Scholar 

  74. Ma, X., Chao, M., Wang, Z.: Electrochemical detection of dopamine in the presence of epinephrine, uric acid and ascorbic acid using a graphene-modified electrode. Anal. Methods 4, 1687 (2012). https://doi.org/10.1039/c2ay25040c

    Article  CAS  Google Scholar 

  75. Schniepp, H.C., Li, J.-L., McAllister, M.J., et al.: Functionalized single graphene sheets derived from splitting graphite oxide. J. Phys. Chem. B 110, 8535–8539 (2006). https://doi.org/10.1021/jp060936f

    Article  CAS  Google Scholar 

  76. Alwarappan, S., Boyapalle, S., Kumar, A., et al.: Comparative study of single-, few-, and multilayered graphene toward enzyme conjugation and electrochemical response. J. Phys. Chem. C 116, 6556–6559 (2012). https://doi.org/10.1021/jp211201b

    Article  CAS  Google Scholar 

  77. Alwarappan, S., Joshi, R.K., Ram, M.K., Kumar, A.: Electron transfer mechanism of cytochrome c at graphene electrode. Appl. Phys. Lett. 96, 263702 (2010). https://doi.org/10.1063/1.3458698

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatih Şen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Demirkan, B., Ay, H., Karakuş, S., Uzun, G., Khan, A., Şen, F. (2019). Electrochemical Detection of Dopamine in the Presence of Uric Acid Using Graphene Oxide Modified Electrode as Highly Sensitive and Selective Sensors. In: Khan, A., Jawaid, M., Neppolian, B., Asiri, A. (eds) Graphene Functionalization Strategies. Carbon Nanostructures. Springer, Singapore. https://doi.org/10.1007/978-981-32-9057-0_7

Download citation

Publish with us

Policies and ethics