Skip to main content

Graphene Functionalization and Nanopolymers

  • Chapter
  • First Online:

Part of the book series: Carbon Nanostructures ((CARBON))

Abstract

This chapter focuses on the functionalization of graphene, mainly in graphene oxide (GO) and reduced graphene oxide (rGO). In this sense the main syntheses for obtaining GO and rGO, as well as their characterizations and applications, were described. To evaluate the electrochemical, spectrophotometric and morphological properties of functionalized graphene, the GO obtained commercially and the rGO synthesized by the chemical method using sodium borohydride were characterized by scanning electron microscopy, Raman, UV-vis, cyclic voltammetry and electrochemical impedance spectroscopy. Through these characterizations it is possible to comprehend the differences between GO and rGO. After that, the importance of the graphene functionalized in the development of electrochemical biosensors and sensors are presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Fitzer, E., Kochling, K.-H., Boehm, H.-P., Marsh, H.: Recommended terminology for the description of carbon as a solid (IUPAC Recommendations 1995). Pure Appl. Chem. 67, 473–506 (1995)

    Article  Google Scholar 

  2. Dreyer, D.R., Park, S., Bielawski, C.W., Ruoff, R.S.: The chemistry of graphene oxide. Chem. Soc. Rev. 39, 228–240 (2010)

    Article  CAS  Google Scholar 

  3. Rowley-Neale, S.J., Randviir, E.P., Dena, A.S.A., Banks, C.E.: An overview of recent applications of reduced graphene oxide as a basis of electroanalytical sensing platforms. Appl. Mater. Today 10, 218–226 (2018)

    Article  Google Scholar 

  4. Pei, S., Cheng, H.-M.: The reduction of graphene oxide. Carbon 50, 3210–3228 (2011)

    Article  CAS  Google Scholar 

  5. Brownson, D.A.C., Varey, S.A., Hussain, F., Haigh, S.J., Banks, C.E.: Electrochemical properties of CVD grown pristine graphene: monolayer- versus quasi-graphene. Nanoscale 6, 1607–1621 (2014)

    Article  CAS  Google Scholar 

  6. Randviir, E.P., Brownson, D.A.C., Banks, C.E.: A decade of graphene research: production, applications and outlook. Mater. Today 17, 426–432 (2014)

    Article  CAS  Google Scholar 

  7. Brownson, D.A.C., Banks, C.E.: The Handbook of Graphene Electrochemistry. Springer, London Ltd (2014)

    Book  Google Scholar 

  8. Kohori, N.A., da Silva, M.K.L., Cesarino, I.: Evaluation of graphene oxide and reduced graphene oxide in the immobilization of laccase enzyme and its application in the determination of dopamine. J. Solid State Electrochem. 22, 141–148 (2018)

    Article  CAS  Google Scholar 

  9. da Silva, M.K.L., Vanzela, H.C., Defavari, L.M., Cesarino, I.: Determination of carbamate pesticide in food using a biosensor based on reduced graphene oxide and acetylcholinesterase enzyme. Sens. Actuators B 277, 555–561 (2018)

    Article  CAS  Google Scholar 

  10. da Silva, M.K.L., Plana Simões, R., Cesarino, I.: Evaluation of reduced graphene oxide modified with antimony and copper nanoparticles for levofloxacin oxidation. Electroanalysis 30, 2066–2076 (2018)

    Article  CAS  Google Scholar 

  11. Zheng, D., Hu, H., Liu, X., Hu, S.: Application of graphene in electrochemical sensing. Curr. Opin. Colloid Interface Sci. 20, 383–405 (2015)

    Article  CAS  Google Scholar 

  12. Song, Y., Luo, Y., Zhu, C., Li, H., Du, D., Lin, Y.: Recent advances in electrochemical biosensors based on graphene two-dimensional nanomaterials. Biosens. Bioelectron. 76, 195–212 (2016)

    Article  CAS  Google Scholar 

  13. Wang, J.: Electrochemical biosensors: towards point-of-care cancer diagnostics. Biosens. Bioelectron. 21, 1887–1892 (2006)

    Article  CAS  Google Scholar 

  14. Brownson, D.A.C., Banks, C.E.: Graphene electrochemistry: an overview of potential applications. Analyst 135, 2768–2778 (2010)

    Article  CAS  Google Scholar 

  15. Park, S., Ruoff, R.S.: Chemical methods for the production of graphenes. Nat. Nanotechnol. 4, 217–224 (2009)

    Article  CAS  Google Scholar 

  16. Brodie, B.C.: Hydration behavior and dynamics of water molecules in graphite oxide. Annales Chimie et de Physique 59, 466–472 (1860)

    Google Scholar 

  17. De Silva, K.K.H., Huang, H.-H., Joshi, R.K., Yoshimura, M.: Chemical reduction of graphene oxide using green reductants. Carbon 119, 190–199 (2017)

    Article  CAS  Google Scholar 

  18. Poh, H.L., Sanek, F., Ambrosi, A., Zhao, G., Sofer, Z., Pumera, M.: Graphenes prepared by Staudenmaier, Hofmann and Hummers methods with consequent thermal exfoliation exhibit very different electrochemical properties. Nanoscale 4, 3515–3522 (2012)

    Article  CAS  Google Scholar 

  19. Hummers, W.S., Offeman, R.E.: Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958)

    Article  CAS  Google Scholar 

  20. Zhu, C., Guo, S., Fang, Y., Dong, S.: Reducing sugar: new functional molecules for the green synthesis of graphene nanosheets. ACS Nano 4, 2429–2437 (2010)

    Article  CAS  Google Scholar 

  21. Zhu, Y., Murali, S., Stoller, M.D., Velamakanni, A., Piner, R.D., Ruoff, R.S.: Microwave assisted exfoliation and reduction of graphite oxide for ultracapacitors. Carbon N. Y. 48, 2118–2122 (2010)

    Article  CAS  Google Scholar 

  22. Unnikrishnan, B., Palanisamy, S., Chen, S.-M.: A simple electrochemical approach to fabricate a glucose biosensor based on graphene–glucose oxidase biocomposite. Biosens. Bioelectron. 39, 70–75 (2013)

    Article  CAS  Google Scholar 

  23. Meng, L.-Y., Wang, B., Ma, M.-G., Lin, K.-L.: The progress of microwave-assisted hydrothermal method in the synthesis of functional nanomaterials. Mater. Today Chem. 1–2, 63–83 (2016)

    Article  Google Scholar 

  24. Cesarino, I., Simões, R.P., Lavarda, F.C., Batagin-Neto, A.: Electrochemical oxidation of sulfamethazine on a glassy carbon electrode modified with graphene and gold nanoparticles. Electrochim. Acta 192, 8–14 (2016)

    Article  CAS  Google Scholar 

  25. Zhou, W., Zhang, F., Liu, S., Wang, J., Du, X., Yin, D., Wang, L.: Microwave-assisted hydrothermal synthesis of graphene-wrapped CuO hybrids for lithium ion batteries. RSC Adv. 4, 51362–51365 (2014)

    Article  CAS  Google Scholar 

  26. Cesarino, I., Cincotto, F.H., Machado, S.A.S.: A synergistic combination of reduced graphene oxide and antimony nanoparticles for estriol hormone detection. Sens. Actuators B Chem. 210, 453–459 (2015)

    Article  CAS  Google Scholar 

  27. Aldosari, M.A., Othman, A.A., Alsharaeh, E.H.: Synthesis and characterization of the in situ bulk polymerization of PMMA containing graphene sheets using microwave irradiation. Molecules 18, 3152–3167 (2013)

    Article  CAS  Google Scholar 

  28. Eluyemi, M.S., Eleruja, M.A., Adedeji, A.V., Olofinjana, B., Fasakin, O., Akinwunmi, O.O., Ilori, O.O., Famojuro, A.T., Ayinde, S.A., Ajayi, E.O.B.: Synthesis and characterization of graphene oxide and reduced graphene oxide thin films deposited by spray pyrolysis method. Graphene 5, 143–154 (2016)

    Article  CAS  Google Scholar 

  29. He, D., Shen, L., Zhang, X., Wang, Y., Bao, N., Kung, H.H.: An efficient and eco-friendly solution-chemical route for preparation of ultrastable reduced graphene oxide suspensions. Am. Inst. Chem. Eng. J. 60, 2757–2764 (2014)

    Article  CAS  Google Scholar 

  30. Gurunathan, S., Han, J.W., Dayem, A.A., Eppakayala, V., Kim, J.H.: Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa. Int. J. Nanomed. 7, 5901–5914 (2012)

    Article  CAS  Google Scholar 

  31. How, G.T.S., Pandikumar, A., Ming, H.N., Ngee, L.H.: Highly exposed 001 facets of titanium dioxide modified with reduced graphene oxide for dopamine sensing. Sci. R. 4, 5044 (2014). https://doi.org/10.1038/srep05044

    Article  CAS  Google Scholar 

  32. Khan, Q.A., Shaur, A., Khan, T.A., Joya, Y.F., Awan, M.S.: Characterization of reduced graphene oxide produced through a modified Hoffman method. Cogent Chem. 3, 1298980 (2017)

    Article  CAS  Google Scholar 

  33. Xu, C., Shi, L., Ji, A., Shi, X., Wang, X., Wang, X.: Synthesis and characterization of reduced graphene oxide with D-fructose and D-galactose as reductants. J. Nanosci. Nanotechnol. 16, 9914–9918 (2016)

    Article  CAS  Google Scholar 

  34. Emiru, T.F., Ayele, D.W.: Controlled synthesis, characterization and reduction of graphene oxide: a convenient method for large scale production. Egypt. J. Basic Appl. Sci. 4, 74–79 (2017)

    Article  Google Scholar 

  35. Rokmana, A.W., Asriani, A., Suhendar, H., Triyana, K., Kusumaatmaja, A., Santoso, I.: The optical properties of thin film reduced graphene oxide/poly (3,4 ethylenedioxtriophene):poly (styrene sulfonate)(pedot:pss) fabricated by spin coating. IOP Conf. Ser. J. Phys. 1011, 012007 (2018). https://doi.org/10.1088/1742-6596/1011/1/012007

    Article  CAS  Google Scholar 

  36. Casero, E., Parra-Alfambra, A.M., Petit-Domínguez, M.D., Pariente, F., Lorenzo, E., Alonso, C.: Differentiation between graphene oxide and reduced graphene by electrochemical impedance spectroscopy (EIS). Electrochem. Commun. 20, 63–66 (2012)

    Article  CAS  Google Scholar 

  37. Gong, Y., Li, D., Fu, Q., Pan, C.: Influence of graphene microstructures on electrochemical performance for supercapacitors. Prog. Nat. Sci. 25, 379–385 (2015)

    Article  CAS  Google Scholar 

  38. Barton, S.C., Gallaway, J., Atanassov, P.: Enzymatic biofuel cells for implantable and microscale devices. Chem. Rev. 104, 4867–4886 (2004)

    Article  CAS  Google Scholar 

  39. Takahashi, H., Li, B., Sasaki, T., Miyazaki, C., Kajino, T., Inagaki, S.: Catalytic activity in organic solvents and stability of immobilized enzymes depend on the pore size and surface characteristics of mesoporous silica. Chem. Mater. 12, 3301–3305 (2000)

    Article  CAS  Google Scholar 

  40. Zhang, Y., Guo, L., Wei, S., He, Y., Xia, H., Chen, Q., Sun, H.-B., Xiao, F.-S.: Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction. Nanotoday 5, 15–20 (2010)

    Article  CAS  Google Scholar 

  41. Zhang, J., Zhang, F., Yang, H., Huang, X., Liu, H., Zhang, J., Guo, S.: Graphene oxide as a matrix for enzyme immobilization. Langmuir 26, 6083–6085 (2010)

    Article  CAS  Google Scholar 

  42. Yoon, J., Shin, J.-W., Lim, J., Mohammadniaei, M., Bharate Bapurao, G., Lee, T., Choi, J.-W.: Electrochemical nitric oxide biosensor based on amine-modified MoS2/graphene oxide/myoglobin hybrid. Colloids Surf. B Biointerfaces 159, 729–736 (2017)

    Article  CAS  Google Scholar 

  43. Ting, S.W., Periasamy, A.P., Chen, S.M., Saraswathi, R.: Direct electrochemistry of catalase immobilized at electrochemically reduced graphene oxide modified electrode for amperometric H2O2 biosensor. Int. J. Electrochem. Sci. 6, 4438–4453 (2011)

    CAS  Google Scholar 

  44. Vijayaraj, K., Hong, S.W., Jin, S.H., Chang, S.C., Park, D.S.: Fabrication of a novel disposable glucose biosensor using an electrochemically reduced graphene oxide–glucose oxidase biocomposite. Anal. Methods 8, 6974–6981 (2016)

    Article  CAS  Google Scholar 

  45. Umar, M.F., Nasar, A.: Reduced graphene oxide/polypyrrole/nitrate reductase deposited glassy carbon electrode (GCE/RGO/PPy/NR): biosensor for the detection of nitrate in wastewater. Appl. Water Sci. 8, 211 (2018)

    Article  CAS  Google Scholar 

  46. Wu, Q., Hou, Y., Zhang, M., Hou, X., Xu, L., Wang, N., Wang, J., Huang, W.: Amperometric cholesterol biosensor based on zinc oxide films on a silver nanowire–graphene oxide modified electrode. Anal. Methods 8, 1806–1812 (2016)

    Article  CAS  Google Scholar 

  47. Wu, S., Wang, Y., Mao, H., Wang, C., Xia, L., Zhang, Y., Ge, H., Song, X.-M.: Direct electrochemistry of cholesterol oxidase and biosensing of cholesterol based on PSS/polymeric ionic liquid–graphene nanocomposite. RSC Adv. 6, 59487–59496 (2016)

    Article  CAS  Google Scholar 

  48. Cincotto, F.H., Canevari, T.C., Machado, S.A.S., Sánchez, A., Barrio, M.A.R., Villalonga, R., Pingarrón, J.M.: Reduced graphene oxide-Sb2O5 hybrid nanomaterial for the design of a laccase-based amperometric biosensor for estriol. Electrochim. Acta 174, 332–339 (2015)

    Article  CAS  Google Scholar 

  49. Guler, M., Turkoglu, V., Basi, Z.: Determination of malation, methidathion, and chlorpyrifos ethyl pesticides using acetylcholinesterase biosensor based on Nafion/Ag@rGO-NH2 nanocomposites. Electrochim. Acta 240, 129–135 (2017)

    Article  CAS  Google Scholar 

  50. Povedano, E., Cincotto, F.H., Parrado, C., Díez, P., Sánchez, A., Canevari, T.C., Machado, S.A.S., Pingarrón, J.M., Villalonga, R.: Decoration of reduced graphene oxide with rhodium nanoparticles for the design of a sensitive electrochemical enzyme biosensor for 17β-estradiol. Biosens. Bioelectron. 89, 343–351 (2017)

    Article  CAS  Google Scholar 

  51. Radhakrishnan, S., Kim, S.J.: An enzymatic biosensor for hydrogen peroxide based on one-pot preparation of CeO2 -reduced graphene oxide nanocomposite. RSC Adv. 5, 12937–12943 (2015)

    Article  CAS  Google Scholar 

  52. Hu, H., Pan, D., Xue, H., Zhang, M., Zhang, Y., Shen, Y.: A photoelectrochemical immunoassay for tumor necrosis factor-α using a GO-PTCNH2 nanohybrid as a probe. J. Electroanal. Chem. 824, 195–200 (2018)

    Article  CAS  Google Scholar 

  53. Asav, E., Akyilmaz, E.: Preparation and optimization of a bienzymic biosensor based on self-assembled monolayer modified gold electrode for alcohol and glucose detection. Biosens. Bioelectron. 25, 1014–1018 (2010)

    Article  CAS  Google Scholar 

  54. Afkhami, A., Hashemi, P., Bagheri, H., Salimian, J., Ahmadi, A., Madrakian, T.: Impedimetric immunosensor for the label-free and direct detection of botulinum neurotoxin serotype A using Au nanoparticles/graphene-chitosan composite. Biosens. Bioelectron. 93, 124–131 (2017)

    Article  CAS  Google Scholar 

  55. Yang, T., Jia, H., Liu, Z., Qiu, X., Gao, Y., Xu, J., Lu, L., Yu, Y.: Label-free electrochemical immunoassay for α-fetoprotein based on a redox matrix of Prussian blue-reduced graphene oxide/gold nanoparticles-poly(3,4-ethylenedioxythiophene) composite. J. Electroanal. Chem. 799, 625–633 (2017)

    Article  CAS  Google Scholar 

  56. Bo, Y., Yang, H., Hu, Y., Yao, T., Huang, S.: A novel electrochemical DNA biosensor based on graphene and polyaniline nanowires. Electrochim. Acta 56, 2676–2681 (2011)

    Article  CAS  Google Scholar 

  57. Huang, H., Bai, W., Dong, C., Guo, R., Liu, Z.: An ultrasensitive electrochemical DNA biosensor based on graphene/Au nanorod/polythionine for human papillomavirus DNA detection. Biosens. Bioelectron. 68, 442–446 (2015)

    Article  CAS  Google Scholar 

  58. Iqbal, S., Ahmad, S.: Recent development in hybrid conducting polymers: synthesis, applications and future prospects. J. Ind. Eng. Chem. 60, 53–84 (2018)

    Article  CAS  Google Scholar 

  59. Shi, H.-J., Kim, K.K., Yoon, S.M., Park, H.K., Jung, I.S., Jin, M.H., Jeong, H.K., Kim, J.M., Choi, J.Y., Lee, Y.H.: Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv. Func. Mater. 19, 1987–1992 (2009)

    Article  CAS  Google Scholar 

  60. Stankovicha, S., Dikin, D.A., Piner, R.D., Kohlhaas, K.A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S.T., Ruoff, R.S.: Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558–1565 (2007)

    Article  CAS  Google Scholar 

  61. Xu, C., Shi, X., Ki, A., Zhou, C., Cui, Y.: Fabrication and characteristics of reduced graphene oxide produced with different green reductants. PLoS ONE 10, 1–15 (2015)

    Google Scholar 

  62. Salas, E.C., Sun, Z., Lu, A., Tour, J.M.: Reduction of graphene oxide via bacterial respiration. ACS Nano 4, 4852–4856 (2010)

    Article  CAS  Google Scholar 

  63. Khanra, P., Kuila, T., Kim, N.H., Bae, S.H., Yu, S.D., Lee, J.H.: Simultaneous bio-functionalization and reduction of graphene oxide by baker’s yeast. Chem. Eng. J. 183, 526–533 (2012)

    Article  CAS  Google Scholar 

  64. Pei, S., Zhao, J., Du, J., Ren, W., Cheng, H.-M.: Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon 48, 4466–4474 (2010)

    Article  CAS  Google Scholar 

  65. Wu, Z.-S., Ren, W., Gao, L., Zhao, J., Chen, Z., Liu, B., Tang, D., Yu, B., Jiang, C., Cheng, H.-M.: Synthesis of graphene sheets with high electrical conductivity and good thermal stability by hydrogen arc discharge exfoliation. ACS Nano 3, 411–417 (2009)

    Article  CAS  Google Scholar 

  66. Zhou, M., Wang, Y., Zhai, Y., Zhai, J., Ren, W., Wang, F., Dong, S.: Controlled synthesis of large-area and patterned electrochemically reduced graphene oxide films. Chem. Eur. J. 15, 6116–6120 (2009)

    Article  CAS  Google Scholar 

  67. Šakinytė, I., Barkauskas, J., Gaidukevič, J., Razumienė, J.: Thermally reduced graphene oxide: the study and use for reagentless amperometric d-fructose biosensors. Talanta 144, 1096–1103 (2015)

    Article  CAS  Google Scholar 

  68. Wang, Y., Wang, Y., Wu, D., Ma, H., Zhang, Y., Fan, D., Pang, X., Du, B., Wei, Q.: Label-free electrochemical immunosensor based on flower-like Ag/MoS2/rGO nanocomposites for ultrasensitive detection of carcinoembryonic antigen. Sens. Actuators B Chem. 255, 125–132 (2018)

    Article  CAS  Google Scholar 

  69. Singh, R., Hong, S., Jang, J.: Label-free detection of influenza viruses using a reduced graphene oxide-based electrochemical immunosensor integrated with a microfluidic platform. Sci. R. 7, 42771 (2017)

    CAS  Google Scholar 

  70. Chen, Q., Yu, C., Gao, R., Gao, L., Li, Q., Yuan, G., He, J.: A novel electrochemical immunosensor based on the rGO-TEPA-PTC-NH2 and AuPt modified C60 bimetallic nanoclusters for the detection of Vangl1, a potential biomarker for dysontogenesis. Biosens. Bioelectron. 79, 364–370 (2016)

    Article  CAS  Google Scholar 

  71. Liu, P., Li, C., Zhang, R., Tang, Q., Wei, J., Lu, Y., Shen, P., (2018). An ultrasensitive electrochemical immunosensor for procalcitonin detection based on the gold nanoparticles-enhanced tyramide signal amplification strategy. In: Biosensors and Bioelectronics, In press

    Google Scholar 

  72. Wang, D.-W., Li, F., Zhao, J., Ren, W., Chen, Z.-G., Tan, J., Wu, Z.-S., Gentle, I., Lu, G.Q., Cheng, H.-M.: Fabrication of graphene/polyaniline composite paper via in situ anodic electropolymerization for high-performance flexible electrode. ACS Nano 3, 1745–1752 (2009)

    Article  CAS  Google Scholar 

  73. Zhang, Y., Wu, L., Lei, W., Xia, X., Xia, M., Hao, Q.: Electrochemical determination of 4-nitrophenol at polycarbazole/N-doped graphene modified glassy carbon electrode. Electrochim. Acta 146, 568–576 (2014)

    Article  CAS  Google Scholar 

  74. Jacob, D., Mini, P.A., Balakrishnan, A., Nair, S.V., Subramanian, K.R.V.: Electrochemical behaviour of graphene–poly (3,4-ethylenedioxythiophene) (PEDOT) composite electrodes for supercapacitor applications. Bull. Mater. Sci. 37, 61–69 (2014)

    Article  CAS  Google Scholar 

  75. do Prado, T.M., Cincotto, F.H., Fatibello-Filho, O., de Moraes, F.C.: Bismuth vanadate/reduced graphene oxide nanocomposite electrode for photoelectrochemical determination of diclofenac in urine. Electroanalysis 30, 2704–2711 (2018)

    Article  CAS  Google Scholar 

  76. Cincotto, F.H., Golinelli, D.L.C., Machado, S.A.S., Moraes, F.C.: Electrochemical sensor based on reduced graphene oxide modified with palladium nanoparticles for determination of desipramine in urine samples. Sens. Actuators B Chem. 239, 488–493 (2017)

    Article  CAS  Google Scholar 

  77. Tabrizi, M.A., Shamsipur, M., Saber, R., Sarkar, S., Zolfaghari, N.: An ultrasensitive sandwich-type electrochemical immunosensor for the determination of SKBR-3 breast cancer cell using rGO-TPA/FeHCFnano labeled Anti-HCT as a signal tag. Sens. Actuators B Chem. 243, 823–830 (2017)

    Google Scholar 

  78. Donini, C.A., da Silva, M.K.L., Simões, R.P., Cesarino, I.: Reduced graphene oxide modified with silver nanoparticles for the electrochemical detection of estriol. J. Electroanal. Chem. 809, 67–73 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support of FAPESP (grant 2015/02136-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivana Cesarino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Silva, M.K.L., Cesarino, I. (2019). Graphene Functionalization and Nanopolymers. In: Khan, A., Jawaid, M., Neppolian, B., Asiri, A. (eds) Graphene Functionalization Strategies. Carbon Nanostructures. Springer, Singapore. https://doi.org/10.1007/978-981-32-9057-0_6

Download citation

Publish with us

Policies and ethics