Skip to main content

Microwave-Assisted Modification of Graphene and Its Derivatives: Synthesis, Reduction and Exfoliation

  • Chapter
  • First Online:
Graphene Functionalization Strategies

Part of the book series: Carbon Nanostructures ((CARBON))

Abstract

Nowadays, microwave heating to graphene derivatives for carbon based materials processing (reduction, exfoliation and modifications) is new approach because strong interaction with microwave radiation, fast and localized heating can be achieved in a very short time. For graphene derivatives, microwave heating method is facile, simple, fast, controllable and energy-saving and provides an effective way to control nanoparticle size distribution on the surfaces. By tuning the microwave irradiation power, time and temperature different graphene based morphologies has been studied. For clear understanding, this chapter has been written basically into two parts. In first part, the literature published on interaction of microwave with grapheme derivatives and their transformations into reduced graphene oxide have been surveyed. The oxygen containing functional groups in different forms on surfaces of graphene derivatives strongly interact with microwave incident photons and easily detached from its surfaces. By microwave heating, graphite oxide/graphene oxide are easily reduced to very less oxygen containing graphene and also exfoliate into high surface containing porous graphene. In second part, graphene derivatives have been modified with different kind of metal/metal oxide for various kinds of applications. It is focused on the latest developments and the current status of graphene-metal oxide research using microwave processing. The high power microwave irradiation on graphene derivatives with metal oxide offers homogenous reaction environment and leads to controlled shape, size distribution of nanoparticles without any agglomeration. Detailed overview has been discussed on the possibilities and achievements of graphene derivatives–metal oxide research using microwave-based heating approaches. Microwave-assisted hydrothermal/solvothermal methods have also been described to synthesize metal oxides loaded graphene derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mayorov, A.S., Gorbachev, R.V., Morozov, S.V., Britnell, L., Jalil, R., Ponomarenko, L.A., Blake, P., Novoselov, K.S., Watanabe, K., Taniguchi, T., Geim, A.K.: Micrometer-scale ballistic transport in encapsulated graphene at room temperature. Nano Lett. 11(6), 2396–2399 (2011)

    Article  CAS  Google Scholar 

  2. Ye, J., Craciun, M.F., Koshino, M., Russo, S., Inoue, S., Yuan, H.: Accessing the transport properties of graphene and its multilayers at high carrier density. Proc. Natl. Acad. Sci. U.S.A. 108, 13002 (2011)

    Article  CAS  Google Scholar 

  3. Zhang, Y., Tan, Y.W., Stormer, H.L., Kim, P.: Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438(7065), 201–204 (2005)

    Article  CAS  Google Scholar 

  4. Balandin, A.A.: Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10(8), 569–581 (2011)

    Article  CAS  Google Scholar 

  5. Lee, C., Wei, X., Kysar, J.W., Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887), 385–388 (2008)

    Article  CAS  Google Scholar 

  6. Nair, R.R., Blake, P., Grigorenko, A.N., Novoselov, K.S., Booth, T.J., Stauber, T., Peres, N.M.R., Geim, A.K.: Fine structure constant defines visual transparency of graphene. Science 320(5881), 1308 (2008)

    Article  CAS  Google Scholar 

  7. Whitener, K.E., Sheehan, P.E.: Graphene synthesis. Diam. Relat. Mater. 46, 25–34 (2014)

    Article  CAS  Google Scholar 

  8. Yi, M., Shen, Z.: A review on mechanical exfoliation for the scalable production of graphene. J. Mater. Chem. A 3(22), 11700–11715 (2015)

    Article  CAS  Google Scholar 

  9. Muñoz, R., Gómez-Aleixandre, C.: Review of CVD synthesis of graphene. Chem. Vap. Depos. 19(10–12), 297–322 (2013)

    Article  CAS  Google Scholar 

  10. Srivastava, A., Galande, C., Ci, L., Song, L., Rai, C., Jariwala, D., Kelly, K.F., Ajayan, P.M.: Novel liquid precursor-based facile synthesis of large-area continuous, single, and few-layer graphene films. Chem. Mater. 22(11), 3457–3461 (2010)

    Article  CAS  Google Scholar 

  11. Li, X., Cai, W., An, J., Kim, S., Nah, J., Yang, D., Piner, R., Velamakanni, A., Jung, I., Tutuc, E., Banerjee, S.K., Colombo, L., Ruoff, R.S.: Large area synthesis of high quality and uniform graphene films on copper foils. Science 324(5932), 1312–1314 (2009)

    Article  CAS  Google Scholar 

  12. Hernandez, Y., Nicolosi, V., Lotya, M., Blighe, F.M., Sun, Z., De, S., McGovern, I.T., Holland, B., Byrne, M., Gun’ko, Y.K., Boland, J.J., Niraj, P., Duesberg, G., Krishnamurthy, S., Goodhue, R., Hutchison, J., Scardaci, V., Ferrari, A.C., Coleman, J.N.: High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 3(9), 563–568 (2008)

    Article  CAS  Google Scholar 

  13. Juang, Z.Y., Wu, C.Y., Lo, C.W., Chen, W.Y., Huang, C.F., Hwang, J.C., Chen, F.R., Leou, K.C., Tsai, C.H.: Synthesis of graphene on silicon carbide substrates at low temperature. Carbon N. Y. 47(8), 2026–2031 (2009)

    Article  CAS  Google Scholar 

  14. Abdolhosseinzadeh, S., Asgharzadeh, H., Kim, H.S.: Fast and fully-scalable synthesis of reduced graphene oxide. Sci. Rep. 5, 1–7 (2015)

    Article  CAS  Google Scholar 

  15. Krane, N.: Preparation of graphene selected topics in physics: physics of nanoscale carbon. Growth Lakel. 4(4), 1–5 (1993)

    Google Scholar 

  16. Thostenson, E.T., Chou, T.: Microwave processing: fundamentals and applications. Compos. Part A Appl. Sci. Manuf. 30, 1055–1071 (1999)

    Article  Google Scholar 

  17. Hill, M.: Chapter 3. Microwave Theory and Background, pp. 56–79 (1993)

    Google Scholar 

  18. Stuerga, D.: Microwave-Material Interactions and Dielectric Properties, Key Ingredients for Mastery of Chemical Microwave Processes, vol. 1 (2008)

    Google Scholar 

  19. Sun, J., Wang, W., Yue, Q.: Review on microwave-matter interaction fundamentals and efficient microwave-associated heating strategies. Materials (Basel) 9(4) (2016)

    Article  CAS  Google Scholar 

  20. Chandrasekaran, S., Ramanathan, S., Basak, T.: Microwave food processing—a review. Frin 52(1), 243–261 (2013)

    CAS  Google Scholar 

  21. Menéndez, J.A., Arenillas, A., Fidalgo, B., Fernández, Y., Zubizarreta, L., Calvo, E.G., Bermúdez, J.M.: Microwave heating processes involving carbon materials. Fuel Process. Technol. J. 91(1), 1–8 (2010)

    Article  CAS  Google Scholar 

  22. Stuerga, D.: Fundamental aspects of microwave irradiation in organic chemistry. Microwaves Org. Synth. 1–56 (2012)

    Google Scholar 

  23. Suits, B.H.: Nuclear quadrupole resonance spectroscopy (Chapter 2). In: Vij, D.R. (ed.) Handbook of Applied Solid State Spectroscopy, pp. 65–96. Springer US, Boston, MA (2006)

    Google Scholar 

  24. Metaxas, A.C.: Microwave heating. Power Eng. J. 5(5), 237–247 (1991)

    Article  Google Scholar 

  25. Sutton, W.: Microwave processing of ceramics - An overview. MRS Proc. 269, 3–19 (1992)

    Google Scholar 

  26. Brandon, J., Samuels, J., Hodgkins, W.: Microwave sintering of oxide ceramics. MRS Proc. 269, 237–244 (1992)

    Google Scholar 

  27. Singh, B., Devi, N., Mathur, L., Singh, R.K., Bhardwaj, A., Song, S.J., Henkensmeier, D.: Fabrication of dense Ce0.9Mg0.1P2O7-PmOn composites by microwave heating for application as electrolyte in intermediate-temperature fuel cells. Ceram. Int. 44(6), 6170–6175 (2018)

    Google Scholar 

  28. Janney, M.A., Kimrey, H.D.: Diffusion-controlled processes in microwave-fired oxide ceramics. MRS Proc. Microw. Process. Mater. II 189, 215–227 (1991)

    Google Scholar 

  29. Agrawal, D.K.: Microwave processing of ceramics. Curr. Opin. Solid State Mater. Sci. 3(5), 480–485 (1998)

    Article  CAS  Google Scholar 

  30. Morell, J.I., Economou, D.J., Amundson, N.R.: Pulsed-power volume-heating chemical vapor infiltration. J. Mater. Res. 7(9), 2447–2457 (1992)

    Article  CAS  Google Scholar 

  31. Ting, J.M., Lagounov, A.G., Lake, M.L.: Chemical vapour infiltration of diamond into a porous carbon. J. Mater. Sci. Lett. 15(4), 350–352 (1996)

    Article  CAS  Google Scholar 

  32. Kranbuehl, D., Delos, S., Yi, E., Mayer, J., Jarvie, T., Winfree, W., Hou, T.: Dynamic dielectric analysis: nondestructive material evaluation and cure cycle monitoring. Polym. Eng. Sci. 26(5), 338–345 (1986)

    Article  CAS  Google Scholar 

  33. Mijović, J., Kenny, J.M., Maffezzoli, A., Trivisano, A., Bellucci, F., Nicolais, L.: The principles of dielectric measurements for in situ monitoring of composite processing. Compos. Sci. Technol. 49(3), 277–290 (1993)

    Article  Google Scholar 

  34. Martinelli, M., Rolla, P.A., Tombari, E.: A method for dynamic dielectric measurements at microwave frequencies: applications to polymerization process studies. IEEE Trans. Instrum. Meas. (3), 417–421 (1985)

    Article  CAS  Google Scholar 

  35. Haran, E.N.: Dielectric properties of an epoxy resin during polymerization. J. Appl. Polym. Sci. 9(11), 3505–3518 (1965)

    Article  CAS  Google Scholar 

  36. Chen, M., Siochi, E.J., Ward, T.C., McGrath, J.E.: Basic ideas of microwave processing of polymers. Polym. Eng. Sci. 33(17), 1092–1109 (1993)

    Article  CAS  Google Scholar 

  37. Drzal, L.T., Hook, K.J., Agrawal, R.K.: Enhanced chemical bonding at the fibre-matrix interphase in microwave processed composites. MRS Online Proc. Libr. Arch. 189, 449–454 (1990)

    Article  Google Scholar 

  38. Lee, W.I., Springer, G.S.: Interaction of electromagnetic radiation with organic matrix composites. J. Compos. Mater. 18(4), 357–386 (1984)

    Google Scholar 

  39. Lee, W.I., Springer, G.S.: Microwave curing of composites. J. Compos. Mater. 18(4), 387–409 (1984)

    Article  CAS  Google Scholar 

  40. Marand, E., Baker, K.R., Graybeal, J.D.: Comparison of reaction mechanisms of epoxy resins undergoing thermal and microwave cure from in situ measurements of microwave dielectric properties and infrared spectroscopy. Macromolecules 25(8), 2243–2252 (1992)

    Article  CAS  Google Scholar 

  41. Wei, J., Hawley, M.C., Delong, J.D., Demeuse, M.: Comparison of microwave and thermal cure of epoxy resins. Polym. Eng. Sci. 33(17), 1132–1140 (1993)

    Article  CAS  Google Scholar 

  42. Jordan, C., Galy, J., Pascault, J.-P., Moré, C., Delmotte, M., Jullien, H.: Comparison of microwave and thermal cure of an epoxy/amine matrix. Polym. Eng. Sci. 35(3), 233–239 (1995)

    Article  CAS  Google Scholar 

  43. Bai, S.L., Djafari, V., Andréani, M., François, D.: A comparative study of the mechanical behaviour of an epoxy resin cured by microwaves with one cured thermally. Eur. Polym. J. 31(9), 875–884 (1995)

    Article  CAS  Google Scholar 

  44. Bai, S.L., Djafari, V.: Interfacial properties of microwave cured composites. Compos. Mater. 4361(July), 645–651 (2014)

    Google Scholar 

  45. Adegbite, V., Hawley, M., Decker, D., Sticklen, J.: Automation of microwave processing of graphite/epoxy composite materials using an expert systems technique. MRS Online Proc. Libr. Arch. Microw. Process. Mater. III 269, 425–430 (1992)

    Google Scholar 

  46. Kim, T., Lee, J., Lee, K.-H.: Microwave heating of carbon-based solid materials. Carbon Lett. 15(1), 15–24 (2014)

    Article  Google Scholar 

  47. Bradshaw, S.M., van Wyk, E.J., de Swardt, J.B.: Microwave heating principles and the application to the regeneration of granular activated carbon. J. South. Afr. Inst. Min. Metall. (August), 201–212 (1998)

    Google Scholar 

  48. Rogti, F., Ferhat, M.: Maxwell-Wagner polarization and interfacial charge at the multi-layers of thermoplastic polymers. J. Electrostat. 72(1), 91–97 (2014)

    Article  CAS  Google Scholar 

  49. Vu, T.T.N., Teyssedre, G., Roy, S.L., Laurent, C.: Maxwell-Wagner effect in multi-layered dielectrics: interfacial charge measurement and modelling. Technologies 5(2), 27 (2017)

    Article  Google Scholar 

  50. Gude, V.G., Patil, P., Martinez-Guerra, E., Deng, S.: Microwave energy potential for biodiesel production. Sustain. Chem. Process. 1, 1–31 (2013)

    Article  CAS  Google Scholar 

  51. Kong, Y., Cha, C.Y.: Microwave-induced regeneration of NOx-saturated char. Energy Fuels 10(6), 1245–1249 (1996)

    Article  CAS  Google Scholar 

  52. Menéndez, J.A., Menéndez, E.M., García, A., Parra, J.B., Pis, J.J.: Thermal treatment of active carbons: a comparison between microwave and electrical heating. J. Microw. Power Electromagn. Energy 34(3), 137–143 (1999)

    Article  Google Scholar 

  53. Carrott, P.J., Nabais, J.M., Ribeiro Carrott, M.M., Menéndez, J.: Thermal treatments of activated carbon fibres using a microwave furnace. Microporous Mesoporous Mater. 47(2), 243–252 (2001)

    Article  CAS  Google Scholar 

  54. Dawei, L., Zhang, Y., Xie, Q., Yazhi, Z.: Microwave thermal remediation of crude oil contaminated soil enhanced by carbon fiber. J. Environ. Sci. 21(9), 1290–1295 (2009)

    Article  CAS  Google Scholar 

  55. Zhu, Y., Murali, S., Stoller, M.D., Velamakanni, A., Piner, R.D., Ruoff, R.S.: Microwave assisted exfoliation and reduction of graphite oxide for ultracapacitors. Carbon N. Y. 48(7), 2118–2122 (2010)

    Article  CAS  Google Scholar 

  56. Yan, Q., Liu, Q., Wang, J.: A simple and fast microwave assisted approach for the reduction of graphene oxide. Ceram. Int. 42(2), 3007–3013 (2016)

    Article  CAS  Google Scholar 

  57. Imholt, T.J., Dyke, C.A., Hasslacher, B., Perez, J.M., Price, D.W., Roberts, J.A., Scott, J.B., Wadhawan, A., Ye, Z., Tour, J.M.: Nanotubes in microwave fields: light emission, intense heat, outgassing, and reconstruction. Chem. Mater. 15(21), 3969–3970 (2003)

    Article  CAS  Google Scholar 

  58. Lin, W., Moon, K., Zhang, S., Ding, Y., Shang, J., Chen, M., Wong, C.: Microwave makes carbon nanotubes less defective. ACS Nano 4(3), 1716–1722 (2010)

    Article  CAS  Google Scholar 

  59. Wang, Q., Zheng, H., Long, Y., Zhang, L., Gao, M., Bai, W.: Microwave-hydrothermal synthesis of fluorescent carbon dots from graphite oxide. Carbon N. Y. 49(9), 3134–3140 (2011)

    Article  CAS  Google Scholar 

  60. Wang, X., Tang, H., Huang, S., Zhu, L.: Fast and facile microwave-assisted synthesis of graphene oxide nanosheets. RSC Adv. 4(104), 60102–60105 (2014)

    Article  CAS  Google Scholar 

  61. Hu, H., Zhao, Z., Zhou, Q., Gogotsi, Y., Qiu, J.: The role of microwave absorption on formation of graphene from graphite oxide. Carbon N. Y. 50(9), 3267–3273 (2012)

    Article  CAS  Google Scholar 

  62. Jiang, F., Yu, Y., Wang, Y., Feng, A., Song, L.: A novel synthesis route of graphene via microwave assisted intercalation-exfoliation of graphite. Mater. Lett. 200, 39–42 (2017)

    Article  CAS  Google Scholar 

  63. Morales, G.M., Schifani, P., Ellis, G., Ballesteros, C., Martínez, G., Barbero, C., Salavagione, H.J.: High-quality few layer graphene produced by electrochemical intercalation and microwave-assisted expansion of graphite. Carbon N. Y. 49(8), 2809–2816 (2011)

    Article  CAS  Google Scholar 

  64. Kumar, D., Raghavan, C.M., Sridhar, C., Shin, J.-H., Ryu, S.H., Jang, K., Shin, D.-S.: Microwave-assisted synthesis, characterization of reduced graphene oxide, and its antibacterial activity. Bull. Korean Chem. Soc. 36(8), 2034–2038 (2015)

    Article  CAS  Google Scholar 

  65. Liu, T., Chai, H., Jia, D., Su, Y., Wang, T., Zhou, W.: Rapid microwave-assisted synthesis of mesoporous NiMoO4 nanorod/reduced graphene oxide composites for high-performance supercapacitors. Electrochim. Acta 180, 998–1006 (2015)

    Article  CAS  Google Scholar 

  66. Ponnusamy, V.K., Mani, V., Chen, S.M., Huang, W.T., Jen, J.F.: Rapid microwave assisted synthesis of graphene nanosheets/polyethyleneimine/gold nanoparticle composite and its application to the selective electrochemical determination of dopamine. Talanta 120, 148–157 (2014)

    Article  CAS  Google Scholar 

  67. Wang, C., Guo, R., Lan, J., Jiang, S., Zhang, Z.: Microwave-assisted synthesis of silver/reduced graphene oxide on cotton fabric. Cellulose 24(9), 4045–4055 (2017)

    Article  CAS  Google Scholar 

  68. Umrao, S., Gupta, T.K., Kumar, S., Singh, V.K., Sultania, M.K., Jung, J.H., Oh, I.K., Srivastava, A.: Microwave-assisted synthesis of boron and nitrogen co-doped reduced graphene oxide for the protection of electromagnetic radiation in Ku-band. ACS Appl. Mater. Interfaces 7(35), 19831–19842 (2015)

    Article  CAS  Google Scholar 

  69. Murugan, A.V., Muraliganth, T., Manthiram, A.: Rapid, facile microwave-solvothermal synthesis of graphene nanosheets and their polyaniline nanocomposites for energy storage. Chem. Mater. 22(8), 2692 (2010)

    Article  CAS  Google Scholar 

  70. Li, L.L., Ji, J., Fei, R., Wang, C.Z., Lu, Q., Zhang, J.R., Jiang, L.P., Zhu, J.J.: A facile microwave avenue to electrochemiluminescent two-color graphene quantum dots. Adv. Funct. Mater. 22(14), 2971–2979 (2012)

    Article  CAS  Google Scholar 

  71. Zhang, C., Cui, Y., Song, L., Liu, X., Hu, Z.: Microwave assisted one-pot synthesis of graphene quantum dots as highly sensitive fluorescent probes for detection of iron ions and pH value. Talanta 150, 54–60 (2016)

    Article  CAS  Google Scholar 

  72. Amiri, A., Sadri, R., Shanbedi, M., Ahmadi, G., Kazi, S.N., Chew, B.T., Zubir, M.N.M.: Synthesis of ethylene glycol-treated graphene nanoplatelets with one-pot, microwave-assisted functionalization for use as a high performance engine coolant. Energy Convers. Manag. 101, 767–777 (2015)

    Article  CAS  Google Scholar 

  73. Amiri, A., Shanbedi, M., Ahmadi, G., Eshghi, H., Chew, B.T., Kazi, S.N.: Microwave-assisted direct coupling of graphene nanoplatelets with poly ethylene glycol and 4-phenylazophenol molecules for preparing stable-colloidal system. Colloids Surf. A Physicochem. Eng. Asp. 487, 131–141 (2015)

    Article  CAS  Google Scholar 

  74. Xie, R., Wang, J., Yang, Y., Jiang, K., Li, Q., Fan, S.: Aligned carbon nanotube coating on polyethylene surface formed by microwave radiation. Compos. Sci. Technol. 72(1), 85–90 (2011)

    Article  CAS  Google Scholar 

  75. Wang, H., Feng, J., Hu, X., Ng, K.M.: The formation of hollow poly(methyl methacrylate)/multiwalled carbon nanotube nanocomposite cylinders by microwave irradiation. Nanotechnology 20(9) (2009)

    Article  CAS  Google Scholar 

  76. Park, S.-H., Kim, H.-K., Roh, K.C., Kim, K.-B.: Co3O4-reduced graphene oxide nanocomposite synthesized by microwave-assisted hydrothermal process for Li-ion batteries. Electron. Mater. Lett. 11(2), 282–287 (2015)

    Article  CAS  Google Scholar 

  77. Siamaki, A.R., Khder, A.E.R.S., Abdelsayed, V., El-Shall, M.S., Gupton, B.F.: Microwave-assisted synthesis of palladium nanoparticles supported on graphene: a highly active and recyclable catalyst for carbon-carbon cross-coupling reactions. J. Catal. 279(1), 1–11 (2011)

    Article  CAS  Google Scholar 

  78. Chen, Y., Huang, Z., Zhang, H., Chen, Y., Cheng, Z., Zhong, Y., Ye, Y., Lei, X.: Synthesis of the graphene/nickel oxide composite and its electrochemical performance for supercapacitors. Int. J. Hydrogen Energy 39(28), 16171–16178 (2014)

    Article  CAS  Google Scholar 

  79. Liao, C.S., Liao, C.T., Tso, C.Y., Shy, H.J.: Microwave-polyol synthesis and electrocatalytic performance of Pt/graphene nanocomposites. Mater. Chem. Phys. 130(1–2), 270–274 (2011)

    Article  CAS  Google Scholar 

  80. Li, N., Tang, S., Pan, Y., Meng, X.: One-step and rapid synthesis of reduced graphene oxide supported Pt nanodendrites by a microwave-assisted simultaneous reduction. Mater. Res. Bull. 49(1), 119–125 (2014)

    Article  CAS  Google Scholar 

  81. Zhou, X., Zhang, J., Su, Q., Shi, J., Liu, Y., Du, G.: Nanoleaf-on-sheet CuO/graphene composites: microwave-assisted assemble and excellent electrochemical performances for lithium ion batteries. Electrochim. Acta 125, 615–621 (2014)

    Article  CAS  Google Scholar 

  82. Amiri, A., Shanbedi, M., Ahmadi, G., Eshghi, H., Kazi, S.N., Chew, B.T., Savari, M., Zubir, M.N.M.: Mass production of highly-porous graphene for high-performance supercapacitors. Sci. Rep. 6(Sept), 1–11 (2016)

    Google Scholar 

  83. Li, Q., Yi, Z., Cheng, Y., Wang, X.X., Yin, D., Wang, L.: Microwave-assisted synthesis of the sandwich-like porous Al2O3/rGO nanosheets anchoring NiO nanocomposite as anode materials for lithium-ion batteries. Appl. Surf. Sci. 427, 354–362 (2018)

    Article  CAS  Google Scholar 

  84. Kumar, R., da Silva, E.T.S.G., Singh, R.K., Savu, R., Alaferdov, A.V., Fonseca, L.C., Carossi, L.C., Singh, A., Khandka, S., Kar, K.K., Alves, O.L., Kubota, L.T., Moshkalev, S.A.: Microwave-assisted synthesis of palladium nanoparticles intercalated nitrogen doped reduced graphene oxide and their electrocatalytic activity for direct-ethanol fuel cells. J. Colloid Interface Sci. 515, 160–171 (2018)

    Article  CAS  Google Scholar 

  85. Voiry, D., Yang, J., Kupferberg, J., Fullon, R., Lee, C., Jeong, H.Y., Shin, H.S., Chhowalla, M.: High-quality graphene via microwave reduction of solution-exfoliated graphene oxide. Science 353(6306), 1413–1416 (2016)

    Article  CAS  Google Scholar 

  86. Chen, W., Yan, L., Bangal, P.R.: Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves. Carbon N. Y. 48(4), 1146–1152 (2010)

    Article  CAS  Google Scholar 

  87. Yuan, X., Wu, Z., Zhong, H., Wang, H., Chen, X., Leng, L., Jiang, L., Xiao, Z., Zeng, G.: Fast removal of tetracycline from wastewater by reduced graphene oxide prepared via microwave-assisted ethylenediamine–N, N′–disuccinic acid induction method. Environ. Sci. Pollut. Res. 23(18), 18657–18671 (2016)

    Article  CAS  Google Scholar 

  88. Leng, X., Xiong, X., Zou, J.P.: Rapid microwave irradiation fast preparation and characterization of few-layer graphenes. Trans. Nonferrous Met. Soc. China 24(1), 177–183 (2014)

    Article  CAS  Google Scholar 

  89. Melucci, M., Treossi, E., Ortolani, L., Giambastiani, G., Morandi, V., Klar, P., Casiraghi, C., Samorì, P., Palermo, V.: Facile covalent functionalization of graphene oxide using microwaves: bottom-up development of functional graphitic materials. J. Mater. Chem. 20(41), 9052–9060 (2010)

    Article  CAS  Google Scholar 

  90. Sulleiro, M.V., Quiroga, S., Peña, D., Pérez, D., Guitián, E., Criado, A., Prato, M.: Microwave-induced covalent functionalization of few-layer graphene with arynes under solvent-free conditions. Chem. Commun. 54(17), 2086–2089 (2018)

    Article  CAS  Google Scholar 

  91. Achary, L.S.K., Kumar, A., Rout, L., Kunapuli, S.V.S., Dhaka, R.S., Dash, P.: Phosphate functionalized graphene oxide with enhanced catalytic activity for Biginelli type reaction under microwave condition. Chem. Eng. J. 2018(331), 300–310 (2017)

    Google Scholar 

  92. Huang, Z., Zhang, H., Chen, Y., Wang, W., Chen, Y., Zhong, Y.: Microwave-assisted synthesis of functionalized graphene on Ni foam as electrodes for supercapacitor application. Electrochim. Acta 108, 421–428 (2013)

    Article  CAS  Google Scholar 

  93. Hu, H., Wang, X., Wang, J., Liu, F., Zhang, M., Xu, C.: Microwave-assisted covalent modification of graphene nanosheets with chitosan and its electrorheological characteristics. Appl. Surf. Sci. 257(7), 2637–2642 (2011)

    Article  CAS  Google Scholar 

  94. Yan, J., Wei, T., Qiao, W., Shao, B., Zhao, Q., Zhang, L., Fan, Z.: Rapid microwave-assisted synthesis of graphene nanosheet/Co3O4 composite for supercapacitors. Electrochim. Acta 55(23), 6973–6978 (2010)

    Article  CAS  Google Scholar 

  95. Zito, C.A., Perfecto, T.M., Fonseca, C.S., Volanti, D.P.: Effective reduced graphene oxide sheets/hierarchical flower-like NiO composites for methanol sensing under high humidity. New J. Chem. 42(11), 8638–8645 (2018)

    Article  CAS  Google Scholar 

  96. Ragavan, K.V., Rastogi, N.K.: Graphene-copper oxide nanocomposite with intrinsic peroxidase activity for enhancement of chemiluminescence signals and its application for detection of Bisphenol-A. Sens. Actuators, B Chem. 229, 570–580 (2016)

    Article  CAS  Google Scholar 

  97. Tian, Y., Liu, Y., Wang, W.P., Zhang, X., Peng, W.: CuO nanoparticles on sulfur-doped graphene for nonenzymatic glucose sensing. Electrochim. Acta 156, 244–251 (2015)

    Article  CAS  Google Scholar 

  98. Wang, Z., Xiao, Y., Cui, X., Cheng, P., Wang, B., Gao, Y., Li, X., Yang, T., Zhang, T., Lu, G.: Humidity-sensing properties of urchinlike CuO nanostructures modified by reduced graphene oxide. ACS Appl. Mater. Interfaces 6(6), 3888–3895 (2014)

    Article  CAS  Google Scholar 

  99. Zhou, X., Shi, J., Liu, Y., Su, Q., Zhang, J., Du, G.: Microwave-assisted synthesis of hollow CuO-Cu2O nanosphere/graphene composite as anode for lithium-ion battery. J. Alloys Compd. 615, 390–394 (2014)

    Article  CAS  Google Scholar 

  100. Zheng, J., Zhang, W., Lin, Z., Wei, C., Yang, W., Dong, P., Yan, Y., Hu, S.: Microwave synthesis of 3D rambutan-like CuO and CuO/reduced graphene oxide modified electrodes for non-enzymatic glucose detection. J. Mater. Chem. B 4(7), 1247–1253 (2016)

    Article  CAS  Google Scholar 

  101. Zhang, L., Hai, X., Xia, C., Chen, X.W., Wang, J.H.: Growth of CuO nanoneedles on graphene quantum dots as peroxidase mimics for sensitive colorimetric detection of hydrogen peroxide and glucose. Sens. Actuators, B Chem. 248, 374–384 (2017)

    Article  CAS  Google Scholar 

  102. Zhang, Y., Chang, G., Liu, S., Tian, J., Wang, L., Lu, W., Qin, X., Sun, X.: Microwave-assisted, environmentally friendly, one-pot preparation of Pd nanoparticles/graphene nanocomposites and their application in electrocatalytic oxidation of methanol. Catal. Sci. Technol. 1(9), 1636–1640 (2011)

    Article  CAS  Google Scholar 

  103. Shi, M., Liu, W., Zhao, D., Chu, Y., Ma, C.: Synthesis of palladium nanoparticles supported on reduced graphene oxide-tungsten carbide composite and the investigation of its performance for electrooxidation of formic acid. J. Solid State Electrochem. 18(7), 1923–1932 (2014)

    Article  CAS  Google Scholar 

  104. Zhang, J.X., Yang, X.L., Shao, H.F., Tseng, C.C., Wang, D.S., Tian, S.S., Hu, W.J., Jing, C., Tian, J.N., Zhao, Y.C.: Microwave-assisted synthesis of Pd oxide-rich Pd particles on nitrogen/sulfur Co-doped graphene with remarkably enhanced ethanol electrooxidation. Fuel Cells 17(1), 115–122 (2017)

    Article  CAS  Google Scholar 

  105. Ju, K.J., Liu, L., Feng, J.J., Zhang, Q.L., Wei, J., Wang, A.J.: Bio-directed one-pot synthesis of Pt-Pd alloyed nanoflowers supported on reduced graphene oxide with enhanced catalytic activity for ethylene glycol oxidation. Electrochim. Acta 188, 696–703 (2016)

    Article  CAS  Google Scholar 

  106. Goswami, A., Rathi, A.K., Aparicio, C., Tomanec, O., Petr, M., Pocklanova, R., Gawande, M.B., Varma, R.S., Zboril, R.: In situ generation of Pd-Pt core-shell nanoparticles on reduced graphene oxide (Pd@ Pt/rGO) using microwaves: applications in dehalogenation reactions and reduction of olefins. ACS Appl. Mater. Interfaces 9(3), 2815–2824 (2017)

    Article  CAS  Google Scholar 

  107. Sharma, S., Ganguly, A., Papakonstantinou, P., Miao, X., Li, M., Hutchison, J.L., Delichatsios, M., Ukleja, S.: Rapid microwave synthesis of CO tolerant reduced graphene oxide-supported platinum electrocatalysts for oxidation of methanol. J. Phys. Chem. C 114(45), 19459–19466 (2010)

    Article  CAS  Google Scholar 

  108. Chu, Y.-Q., Liu, W.-M., Ma, C.-A., Shi, M.-Q., Zhao, D.: Special microwave-assisted one-pot synthesis of low loading Pt–Ru alloy nanoparticles on reduced graphene oxide for methanol oxidation. Micro Nano Lett. 9(1), 50–54 (2014)

    Article  CAS  Google Scholar 

  109. Xie, J.: Microwave synthesis of reduced graphene oxide-supported platinum nanocomposite with high electrocatalytic activity for methanol oxidation. Int. J. Electrochem. Sci. 12, 466–474 (2017)

    Article  CAS  Google Scholar 

  110. Liu, S., Tian, J., Wang, L., Sun, X.: Microwave-assisted rapid synthesis of Ag nanoparticles/graphene nanosheet composites and their application for hydrogen peroxide detection. J. Nanopart. Res. 13(10), 4539–4548 (2011)

    Article  CAS  Google Scholar 

  111. Li, Q., Hai, P.: Rapid microwave-assisted synthesis of silver decorated-reduced graphene oxide nanoparticles with enhanced photocatalytic activity under visible light. Mater. Sci. Semicond. Process. 22(1), 16–20 (2014)

    Article  CAS  Google Scholar 

  112. Hsu, K., Chen, D.: Microwave-assisted green synthesis of Ag/reduced graphene oxide nanocomposite as a surface-enhanced Raman scattering substrate with high uniformity. Nanoscale Res. Lett. 9, 193 (2014)

    Article  CAS  Google Scholar 

  113. Meng, A., Shao, J., Fan, X., Wang, J., Li, Z.: Rapid synthesis of a flower-like ZnO/rGO/Ag micro/nano-composite with enhanced photocatalytic performance by a one-step microwave method. RSC Adv. 4(104), 60300–60305 (2014)

    Article  CAS  Google Scholar 

  114. Li, Y., Fan, B., Han, F., Yang, J., Zhang, R.: Microwave-assisted synthesis of Ag/rGO composites and their cytotoxicity for HT22 neuronal cell. Mater. Res. Innov. 21(4), 257–261 (2017)

    Article  CAS  Google Scholar 

  115. Mady, A.H., Baynosa, M.L., Tuma, D., Shim, J.J.: Facile microwave-assisted green synthesis of Ag-ZnFe2O4@ rGO nanocomposites for efficient removal of organic dyes under UV- and visible-light irradiation. Appl. Catal. B Environ. 203, 416–427 (2017)

    Article  CAS  Google Scholar 

  116. Liu, X., Pan, L., Lv, T., Zhu, G., Lu, T., Sun, Z., Sun, C.: Microwave-assisted synthesis of TiO2-reduced graphene oxide composites for the photocatalytic reduction of Cr(VI). RSC Adv. 1(7), 1245–1249 (2011)

    Article  CAS  Google Scholar 

  117. Kumar, K.D., Kumar, G.P., Reddy, K.S.: Rapid microwave synthesis of reduced graphene oxide-supported TiO2 nanostructures as high performance photocatalyst. Mater. Today Proc. 2(4–5), 3736–3742 (2015)

    Article  Google Scholar 

  118. Liu, X., Pan, L., Lv, T., Sun, Z.: Investigation of photocatalytic activities over ZnO-TiO2-reduced graphene oxide composites synthesized via microwave-assisted reaction. J. Colloid Interface Sci. 394(1), 441–444 (2013)

    Article  CAS  Google Scholar 

  119. Ramadoss, A., Kim, S.J.: Improved activity of a graphene-TiO2 hybrid electrode in an electrochemical supercapacitor. Carbon N. Y. 63, 434–445 (2013)

    Article  CAS  Google Scholar 

  120. Lv, T., Pan, L., Liu, X., Lu, T., Zhu, G., Sun, Z.: Enhanced photocatalytic degradation of methylene blue by ZnO-reduced graphene oxide composite synthesized via microwave-assisted reaction. J. Alloys Compd. 509(41), 10086–10091 (2011)

    Article  CAS  Google Scholar 

  121. Lv, T., Pan, L., Liu, X., Sun, Z.: Enhanced photocatalytic degradation of methylene blue by ZnO-reduced graphene oxide-carbon nanotube composites synthesized via microwave-assisted reaction. Catal. Sci. Technol. 2(11), 2297–2301 (2012)

    Article  CAS  Google Scholar 

  122. Herring, N.P., Almahoudi, S.H., Olson, C.R., El-Shall, M.S.: Enhanced photocatalytic activity of ZnO-graphene nanocomposites prepared by microwave synthesis. J. Nanopart. Res. 14(12) (2012)

    Google Scholar 

  123. Liu, Y., Hu, Y., Zhou, M., Qian, H., Hu, X.: Microwave-assisted non-aqueous route to deposit well-dispersed ZnO nanocrystals on reduced graphene oxide sheets with improved photoactivity for the decolorization of dyes under visible light. Appl. Catal. B Environ. 125, 425–431 (2012)

    Article  CAS  Google Scholar 

  124. Omar, F.S., Ming, H.N., Hafiz, S.M., Ngee, L.H.: Microwave synthesis of zinc oxide/reduced graphene oxide hybrid for adsorption-photocatalysis application. Int. J. Photoenergy 2014 (2014)

    Article  CAS  Google Scholar 

  125. Kashinath, L., Namratha, K., Byrappa, K.: Microwave assisted facile hydrothermal synthesis and characterization of zinc oxide flower grown on graphene oxide sheets for enhanced photodegradation of dyes. Appl. Surf. Sci. 357, 1849–1856 (2015)

    Article  CAS  Google Scholar 

  126. Lellala, K., Namratha, K., Byrappa, K.: Microwave assisted synthesis and characterization of nanostructure zinc oxide-graphene oxide and photo degradation of brilliant blue. Mater. Today Proc. 3(1), 74–83 (2016)

    Article  Google Scholar 

  127. Firmiano, E.G.S., Cordeiro, M.A.L., Rabelo, A.C., Dalmaschio, C.J., Pinheiro, A.N., Pereira, E.C., Leite, E.R.: Graphene oxide as a highly selective substrate to synthesize a layered MoS2 hybrid electrocatalyst. Chem. Commun. 48(62), 7687–7689 (2012)

    Article  CAS  Google Scholar 

  128. Da Silveira Firmiano, E.G., Rabelo, A.C., Dalmaschio, C.J., Pinheiro, A.N., Pereira, E.C., Schreiner, W.H., Leite, E.R.: Supercapacitor electrodes obtained by directly bonding 2D MoS2 on reduced graphene oxide. Adv. Energy Mater. 4(6), 1–8 (2014)

    Article  CAS  Google Scholar 

  129. Qin, W., Chen, T., Pan, L., Niu, L., Hu, B., Li, D., Li, J., Sun, Z.: MoS2-reduced graphene oxide composites via microwave assisted synthesis for sodium ion battery anode with improved capacity and cycling performance. Electrochim. Acta 153, 55–61 (2015)

    Article  CAS  Google Scholar 

  130. Li, J., Liu, X., Pan, L., Qin, W., Chen, T., Sun, Z.: MoS2-reduced graphene oxide composites synthesized via a microwave-assisted method for visible-light photocatalytic degradation of methylene blue. RSC Adv. 4(19), 9647–9651 (2014)

    Article  CAS  Google Scholar 

  131. Liu, N., Wang, X., Xu, W., Hu, H., Liang, J., Qiu, J.: Microwave-assisted synthesis of MoS2/graphene nanocomposites for efficient hydrodesulfurization. Fuel 119, 163–169 (2014)

    Article  CAS  Google Scholar 

  132. Youn, D.H., Jo, C., Kim, J.Y., Lee, J., Lee, J.S.: Ultrafast synthesis of MoS2 or WS2-reduced graphene oxide composites via hybrid microwave annealing for anode materials of lithium ion batteries. J. Power Sources 295, 228–234 (2015)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh K. Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Devi, N., Kumar, R., Singh, R.K. (2019). Microwave-Assisted Modification of Graphene and Its Derivatives: Synthesis, Reduction and Exfoliation. In: Khan, A., Jawaid, M., Neppolian, B., Asiri, A. (eds) Graphene Functionalization Strategies. Carbon Nanostructures. Springer, Singapore. https://doi.org/10.1007/978-981-32-9057-0_12

Download citation

Publish with us

Policies and ethics