Skip to main content

Metabolism of Mycotoxins and the Potential Biomarkers for Risk Assessment

  • Chapter
  • First Online:
  • 676 Accesses

Abstract

Currently, most metabolic research on mycotoxins focuses on four classes of toxins, aflatoxins, trichothecenes, zearalenone, and fumonisin. These types of mycotoxins are widely contaminated by food crops. Ingestion by human and animal intake can cause different types and degrees of harm. For example, deoxynivalenol from members of the trichothecene family can cause nausea, vomiting, and refusal to eat; zearalenone can cause animal infertility, miscarriage, stillbirth, and liver dysfunction; and fumonisin can cause kidney damage, etc., which have caused great losses to the animal husbandry and may even threaten human health. Till now several metabolites from a few of mycotoxins have been roughly identified. Simultaneously, the cytotoxicities of mycotoxins and related metabolites were evaluated by experimental animal and various cell tests. The molecular mechanisms of the toxicities were further explored to achieve more data of toxicities from one single or mixed mycotoxins on some occasion. This would provide some new venues or menace reminding from possible thresholds legislation of mycotoxins and related metabolites to guarantee safer foods in the future.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahamed S, Foster JS, Bukovsky A, Wimalasena J (2001) Signal transduction through the Ras/Erk pathway is essential for the mycoestrogen zearalenone-induced cell-cycle progression in MCF-7 cells. Mol Carcinogen 30(2):88–98. https://doi.org/10.1002/1098-2744(200102)30:2<88::Aid-Mc1017>3.0.Co;2-E

    Article  CAS  Google Scholar 

  • Bennett JW, Klich M (2003) Mycotoxins. Clin Microbiol Rev 16(3):497–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai G, Sun K, Wang T, Zou H, Gu J, Yuan Y, Liu X, Liu Z, Bian J (2018) Mechanism and effects of Zearalenone on mouse T lymphocytes activation in vitro. Ecotoxicol Environ Saf 162:208–217. https://doi.org/10.1016/j.ecoenv.2018.06.055

    Article  CAS  PubMed  Google Scholar 

  • Chen F, Li Q, Zhang Z, Lin P, Lei L, Wang A, Jin Y (2015) Endoplasmic reticulum stress cooperates in zearalenone-induced cell death of RAW 264.7 macrophages. Int J Mol Sci 16(8):19780–19795. https://doi.org/10.3390/ijms160819780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Creppy EE (2002) Update of survey, regulation and toxic effects of mycotoxins in Europe. Toxicol Lett 127(1–3):19–28

    Article  CAS  PubMed  Google Scholar 

  • Deng C, Li C, Zhou S, Wang X, Xu H, Wang D, Gong YY, Routledge MN, Zhao Y, Wu Y (2018) Risk assessment of deoxynivalenol in high-risk area of China by human biomonitoring using an improved high throughput UPLC-MS/MS method. Sci Rep 8(1):3901

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dohnal V, Wu Q, Kuča K (2014) Metabolism of aflatoxins: key enzymes and interindividual as well as interspecies differences. Arch Toxicol 88(9):1635–1644

    Article  CAS  PubMed  Google Scholar 

  • Domijan AM, Peraica M, Vrdoljak AL, Radic B, Zlender V, Fuchs R (2007) The involvement of oxidative stress in ochratoxin A and fumonisin B1 toxicity in rats. Mol Nutr Food Res 51(9):1147–1151. https://doi.org/10.1002/mnfr.200700079

    Article  CAS  PubMed  Google Scholar 

  • Domijan A, Zeljezic D, Peraica M, Kovacevic G, Gregorovic G, Krstanac Z, Horvatin K, Kalafatic M (2008) Early toxic effects of fumonisin B1 in rat liver. Hum Exp Toxicol 27(12):895–900. https://doi.org/10.1177/0960327108100418

    Article  CAS  PubMed  Google Scholar 

  • Donnelly PJ, Stewart RK, Ali SL, Conlan AA, Reid KR, Petsikas D, Massey TE (1996) Biotransformation of aflatoxin B1 in human lung. Carcinogenesis 17(11):2487–2494

    Article  CAS  PubMed  Google Scholar 

  • Eriksen GS, Pettersson H, Lindberg JE (2003) Absorption, metabolism and excretion of 3-acetyl DON in pigs. Arch Anim Nutr 57(5):335–345

    Article  CAS  Google Scholar 

  • Gao X, Xiao ZH, Liu M, Zhang NY, Khalil MM, Gu CQ, Qi DS, Sun LH (2018) Dietary Silymarin supplementation alleviates zearalenone-induced hepatotoxicity and reproductive toxicity in rats. J Nutr 148(8):1209–1216. https://doi.org/10.1093/jn/nxy114

    Article  PubMed  Google Scholar 

  • Gelderblom WC, Marasas WF, Vleggaar R, Thiel PG, Cawood ME (1992) Fumonisins: isolation, chemical characterization and biological effects. Mycopathologia 117(1–2):11–16

    Article  CAS  PubMed  Google Scholar 

  • Ghadiri S, Spalenza V, Dellafiora L, Badino P, Barbarossa A, Dall’Asta C, Nebbia C, Girolami F (2019) Modulation of aflatoxin B1 cytotoxicity and aflatoxin M1 synthesis by natural antioxidants in a bovine mammary epithelial cell line. Toxicol In Vitro 57:174–183

    Article  CAS  PubMed  Google Scholar 

  • Ghedira-Chekir L, Maaroufi K, Zakhama A, Ellouz F, Dhouib S, Creppy EE, Bacha H (1998) Induction of a SOS repair system in lysogenic bacteria by zearalenone and its prevention by vitamin E. Chem Biol Interact 113(1):15–25. https://doi.org/10.1016/S0009-2797(98)00013-1

    Article  CAS  PubMed  Google Scholar 

  • Gratz SW (2017) Do Plant-bound masked mycotoxins contribute to toxicity? Toxins 9(3):85. https://doi.org/10.3390/toxins9030085

    Article  CAS  PubMed Central  Google Scholar 

  • Gratz SW, Duncan G, Richardson AJ (2013) The human fecal microbiota metabolizes deoxynivalenol and deoxynivalenol-3-glucoside and may be responsible for urinary deepoxy-deoxynivalenol. Appl Environ Microbiol 79(6):1821–1825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Groopman JD, Zhu JQ, Donahue PR, Pikul A, Zhang LS, Chen JS, Wogan GN (1992) Molecular dosimetry of urinary aflatoxin-DNA adducts in people living in Guangxi autonomous region, People’s Republic of China. Cancer Res 52(1):45–52

    Google Scholar 

  • Guerre P (2015) Fusariotoxins in avian species: Toxicokinetics, metabolism and persistence in tissues. Toxins (Basel) 7(6):2289–2305. https://doi.org/10.3390/toxins7062289

    Article  CAS  Google Scholar 

  • Hueza IM, Raspantini PCF, Raspantini LER, Latorre AO, Gorniak SL (2014) Zearalenone, an estrogenic mycotoxin, is an Immunotoxic compound. Toxins 6(3):1080–1095. https://doi.org/10.3390/toxins6031080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ihsan A, Wang X, Liu Z, Wang Y, Huang X, Liu Y, Yu H, Zhang H, Li T, Yang C, Yuan Z (2011) Long-term mequindox treatment induced endocrine and reproductive toxicity via oxidative stress in male Wistar rats. Toxicol Appl Pharmacol 252(3):281–288. https://doi.org/10.1016/j.taap.2011.02.020

    Article  CAS  PubMed  Google Scholar 

  • Jee Y, Noh EM, Cho ES, Son HY (2010) Involvement of the Fas and Fas ligand in testicular germ cell apoptosis by zearalenone in rat. J Vet Sci 11(2):115–119

    Article  PubMed  PubMed Central  Google Scholar 

  • Juan-García A, Juan C, Tolosa J, Ruiz MJ (2019) Effects of deoxynivalenol, 3-acetyl-deoxynivalenol and 15-acetyl-deoxynivalenol on parameters associated with oxidative stress in HepG2 cells. Mycotoxin Res 35(2):197–205

    Article  PubMed  CAS  Google Scholar 

  • Kamdem LK, Meineke I, Gödtel-Armbrust U, Brockmöller J, Wojnowski L (2006) Dominant contribution of P450 3A4 to the hepatic carcinogenic activation of aflatoxin B1. Chem Res Toxicol 19(4):577–586

    Article  CAS  PubMed  Google Scholar 

  • Kemppainen BW, Riley RT, Pace JG, Hoerr FJ (1986) Effects of skin storage conditions and concentration of applied dose on [3H] T-2 toxin penetration through excised human and monkey skin. Food Chem Toxicol 24(3):221–227

    Article  CAS  PubMed  Google Scholar 

  • Khaneghah AM, Martins LM, von Hertwig AM, Bertoldo R, Sant’Ana AS (2018) Deoxynivalenol and its masked forms: characteristics, incidence, control and fate during wheat and wheat based products processing - a review. Trends Food Sci Tech 71:13–24

    Article  CAS  Google Scholar 

  • Klaric MS, Pepeljnjak S, Domijan AM, Petrik J (2007) Lipid peroxidation and glutathione levels in porcine kidney PK15 cells after individual and combined treatment with fumonisin B(1), beauvericin and ochratoxin A. Basic Clin Pharmacol Toxicol 100(3):157–164. https://doi.org/10.1111/j.1742-7843.2006.00019.x

    Article  CAS  PubMed  Google Scholar 

  • Klein PJ, Van Vleet TR, Hall JO, Coulombe RA Jr (2002) Biochemical factors underlying the age-related sensitivity of turkeys to aflatoxin B1. Comp Biochem Phys C 132:193–201

    Google Scholar 

  • Lake BG, Phillips JC, Waters DG, Bayley DL, Cook MW, Thomas LV, Gilbert J, Startin JR, Baldwin NCP, Bycroft BW, Dewick PM (1987) Studies on the metabolism of deoxynivalenol in the rat. Food Chem Toxicol 25(8):589–592

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Zhang B, Huang K, He X, Luo Y, Liang R, Luo H, Shen XL, Xu W (2014) Mitochondrial proteomic analysis reveals the molecular mechanisms underlying reproductive toxicity of zearalenone in MLTC-1 cells. Toxicology 324:55–67. https://doi.org/10.1016/j.tox.2014.07.007

    Article  CAS  PubMed  Google Scholar 

  • Liang Z, Ren Z, Gao S, Chen Y, Yang Y, Yang D, Deng J, Zuo Z, Wang Y, Shen L (2015) Individual and combined effects of deoxynivalenol and zearalenone on mouse kidney. Environ Toxicol Pharmacol 40(3):686–691. https://doi.org/10.1016/j.etap.2015.08.029

    Article  CAS  PubMed  Google Scholar 

  • Lozano MC, Diaz GJ (2006) Microsomal and cytosolic biotransformation of aflatoxin B1 in four poultry species. Brit Poultry Sci 47:734–741

    Article  CAS  Google Scholar 

  • Marin DE, Motiu M, Taranu I (2015) Food contaminant zearalenone and its metabolites affect cytokine synthesis and intestinal epithelial integrity of porcine cells. Toxins 7(6):1979–1988. https://doi.org/10.3390/toxins7061979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marschik S, Hepperle J, Lauber U, Schnaufer R, Maier S, Kuhn C, Schwab-Bohnert G (2013) Extracting fumonisins from maize: efficiency of different extraction solvents in multi-mycotoxin analytics. Mycotoxin Res 29(2):119–129. https://doi.org/10.1007/s12550-013-0163-1

    Article  CAS  PubMed  Google Scholar 

  • Massey TE, Smith GB, Tam AS (2000) Mechanisms of aflatoxin B1 lung tumorigenesis. Exp Lung Res 26(8):673–683

    Article  CAS  PubMed  Google Scholar 

  • Meky FA, Turner PC, Ashcroft AE, Miller JD, Qiao YL, Roth MJ, Wild CP (2003) Development of a urinary biomarker of human exposure to deoxynivalenol. Food Chem Toxicol 41(2):265–273

    Article  CAS  PubMed  Google Scholar 

  • Mesnil M, Crespin S, Avanzo JL, Zaidan-Dagli ML (2005) Defective gap junctional intercellular communication in the carcinogenic process. Biochim Biophys Acta 1719(1–2):125–145. https://doi.org/10.1016/j.bbamem.2005.11.004

    Article  CAS  PubMed  Google Scholar 

  • Mirocha CJ, Pathre SV, Robison TS (1981) Comparative metabolism of zearalenone and transmission into bovine-milk. Food Cosmet Toxicol 19(1):25–30. https://doi.org/10.1016/0015-6264(81)90299-6

    Article  CAS  PubMed  Google Scholar 

  • Mishra S, Dwivedi PD, Pandey HP, Das M (2014) Role of oxidative stress in Deoxynivalenol induced toxicity. Food Chem Toxicol 72:20–29. https://doi.org/10.1016/j.fct.2014.06.027

    Article  CAS  PubMed  Google Scholar 

  • Mobio TA, Tavan E, Baudrimont I, Anane R, Carratu MR, Sanni A, Gbeassor MF, Shier TW, Narbonne JF, Creppy EE (2003) Comparative study of the toxic effects of fumonisin B1 in rat C6 glioma cells and p53-null mouse embryo fibroblasts. Toxicology 183(1–3):65–75

    Article  CAS  PubMed  Google Scholar 

  • Mykkänen H, Zhu H, Salminen E, Juvonen RO, Ling W, Ma J, Polychronaki N, Kemiläinen H, Mykkänen O, Salminen S, El-Nezami H (2005) Fecal and urinary excretion of aflatoxin B1 metabolites (AFQ1, AFM1 and AFB-N7-guanine) in young Chinese males. Int J Cancer 115(6):879–884

    Article  PubMed  CAS  Google Scholar 

  • Nagl V, Schwartz H, Krska R, Moll WD, Knasmüller S, Ritzmann M, Adam G, Berthiller F (2012) Metabolism of the masked mycotoxin deoxynivalenol-3-glucoside in rats. Toxicol Lett 213(3):367–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagl V, Woechtl B, Schwartz-Zimmermann HE, Hennig-Pauka I, Moll WD, Adam G, Berthiller F (2014) Metabolism of the masked mycotoxin deoxynivalenol-3-glucoside in pigs. Toxicol Lett 229(1):190–197

    Article  CAS  PubMed  Google Scholar 

  • Olsen M, Pettersson H, Kiessling KH (1981) Reduction of zearalenone to zearalenol in female rat-liver by 3-alpha-hydroxysteroid dehydrogenase. Acta Pharmacol Tox 48(2):157–161

    Article  CAS  Google Scholar 

  • Ouanes-Ben Othmen Z, Essefi SA, Bacha H (2008) Mutagenic and epigenetic mechanisms of zearalenone: prevention by vitamin E. World Mycotoxin J 1(3):369–374. https://doi.org/10.3920/Wmj2008.1036

    Article  CAS  Google Scholar 

  • Parandin R, Behnam-Rassouli M, Mahdavi-Shahri N (2017) Effects of neonatal exposure to zearalenone on puberty timing, hypothalamic nuclei of AVPV and ARC, and reproductive functions in female mice. Reprod Sci 24(9):1293–1303. https://doi.org/10.1177/1933719116683808

    Article  CAS  PubMed  Google Scholar 

  • Parveen M, Zhu Y, Kiyama R (2009) Expression profiling of the genes responding to zearalenone and its analogues using estrogen-responsive genes. FEBS Lett 583(14):2377–2384. https://doi.org/10.1016/j.febslet.2009.06.035

    Article  CAS  PubMed  Google Scholar 

  • Rawal S, Coulombe RA Jr (2011) Metabolism of aflatoxin B1 in Turkey liver microsomes: the relative roles of cytochromes P4501A5 and 3A37. Toxicol Appl Pharmacol 254(3):349–354

    Article  CAS  PubMed  Google Scholar 

  • Rogowska A, Pomastowski P, Sagandykova G, Buszewski B (2019) Zearalenone and its metabolites: effect on human health, metabolism and neutralisation methods. Toxicon. https://doi.org/10.1016/j.toxicon.2019.03.004

    Article  CAS  PubMed  Google Scholar 

  • Sadler TW, Merrill AH, Stevens VL, Sullards MC, Wang E, Wang P (2002) Prevention of fumonisin B1-induced neural tube defects by folic acid. Teratology 66(4):169–176. https://doi.org/10.1002/tera.10089

    Article  CAS  PubMed  Google Scholar 

  • Schwartz-Zimmermann HE, Fruhmann P, Dänicke S, Wiesenberger G, Caha S, Weber J, Berthiller F (2015) Metabolism of deoxynivalenol and deepoxy-deoxynivalenol in broiler chickens, pullets, roosters and turkeys. Toxins (Basel) 7(11):4706–4729

    Article  CAS  Google Scholar 

  • Shi J, Sun B, Shi W, Zuo H, Cui D, Ni L, Chen J (2015) Decreasing GSH and increasing ROS in chemosensitivity gliomas with IDH1 mutation. Tumour Biol 36(2):655–662. https://doi.org/10.1007/s13277-014-2644-z

    Article  CAS  PubMed  Google Scholar 

  • Stob M, Baldwin RS, Tuite J, Andrews FN, Gillette KG (1962) Isolation of an anabolic, uterotrophic compound from corn infected with Gibberella zeae. Nature 196:1318

    Article  CAS  PubMed  Google Scholar 

  • Sun YX, Yao X, Shi SN, Zhang GJ, Xu LX, Liu YJ, Fang BH (2015) Toxicokinetics of T-2 toxin and its major metabolites in broiler chickens after intravenous and oral administration. J Vet Pharmacol Ther 38(1):80–85

    Article  CAS  PubMed  Google Scholar 

  • Szabo A, Szabo-Fodor J, Febel H, Mezes M, Balogh K, Bazar G, Kocso D, Ali O, Kovacs M (2017) Individual and combined effects of fumonisin B(1), deoxynivalenol and zearalenone on the hepatic and renal membrane lipid integrity of rats. Toxins (Basel) 10(1). https://doi.org/10.3390/toxins10010004

    Article  PubMed Central  CAS  Google Scholar 

  • Trusal LR (1986) Metabolism of T-2 mycotoxin by cultured cells. Toxicon 24(6):597–603

    Article  CAS  PubMed  Google Scholar 

  • Turner PC, Burley VJ, Rothwell JA, White KL, Cade JE, Wild CP (2008) Deoxynivalenol: rationale for development and application of a urinary biomarker. Food Addit Contam Part A 25(7):864–871

    Article  CAS  Google Scholar 

  • Turner PC, Hopton RP, Lecluse Y, White KL, Fisher J, Lebailly P (2010) Determinants of urinary deoxynivalenol and de-epoxy deoxynivalenol in male farmers from Normandy, France. J Agric Food Chem 58(8):5206–5212

    Article  CAS  PubMed  Google Scholar 

  • Turner PC, Hopton RP, White KL, Fisher J, Cade JE, Wild CP (2011) Assessment of deoxynivalenol metabolite profiles in UK adults. Food Chem Toxicol 49(1):132–135

    Article  CAS  PubMed  Google Scholar 

  • Urry WH, Wehrmeister HL, Hodge EB, Hidy PH (1966) The structure of zearalenone. Tetrahedron Lett 7(27):3109–3114

    Article  Google Scholar 

  • Vidal A, Claeys L, Mengelers M, Vanhoorne V, Vervaet C, Huybrechts B, De Saeger S, De Boevre M (2018) Humans significantly metabolize and excrete the mycotoxin deoxynivalenol and its modified form deoxynivalenol-3-glucoside within 24 hours. Sci Rep 8(1):5255

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang X, Liu Q, Ihsan A, Huang L, Dai M, Hao H, Cheng G, Liu Z, Wang Y, Yuan Z (2012) JAK/STAT pathway plays a critical role in the proinflammatory gene expression and apoptosis of RAW264.7 cells induced by trichothecenes as DON and T-2 toxin. Toxicol Sci 127(2):412–424. https://doi.org/10.1093/toxsci/kfs106

    Article  CAS  PubMed  Google Scholar 

  • Warth B, Sulyok M, Berthiller F, Schuhmacher R, Krska R (2013) New insights into the human metabolism of the Fusarium mycotoxins deoxynivalenol and zearalenone. Toxicol Lett 220:88–94

    Article  CAS  PubMed  Google Scholar 

  • Warth B, Del Favero G, Wiesenberger G, Puntscher H, Woelflingseder L, Fruhmann P, Sarkanj B, Krska R, Schuhmacher R, Adam G, Marko D (2016) Identification of a novel human deoxynivalenol metabolite enhancing proliferation of intestinal and urinary bladder cells. Sci Rep 6:33854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weidner M, Hüwel S, Ebert F, Schwerdtle T, Galla HJ, Humpf HU (2012) Influence of T-2 and HT-2 toxin on the blood-brain barrier in vitro: new experimental hints for neurotoxic effects. PLoS One 8(3):e60484

    Article  CAS  Google Scholar 

  • Welsch T, Humpf HU (2012) HT-2 toxin 4-glucuronide as new T-2 toxin metabolite: enzymatic synthesis, analysis, and species specific formation of T-2 and HT-2 toxin glucuronides by rat, mouse, pig, and human liver microsomes. J Agric Food Chem 60:10170–10178

    Article  CAS  PubMed  Google Scholar 

  • Worrell NR, Mallett AT, Cook WM, Baldwin NCP, Shepherd MJ (1989) The role of gut micro-organisms in the metabolism of deoxynivalenol administered to rats. Xenobiotica 19(1):25–32

    Article  CAS  PubMed  Google Scholar 

  • Wu Q, Jezkova A, Yuan Z, Pavlikova L, Dohnal V, Kuca K (2009) Biological degradation of aflatoxins. Drug Metab Rev 41(1):1–7

    Article  PubMed  CAS  Google Scholar 

  • Wu Q, Engemann A, Cramer B, Welsch T, Yuan Z, Humpf HU (2012) Intestinal metabolism of T-2 toxin in the pig cecum model. Mycotoxin Res 28:191–198

    Article  PubMed  CAS  Google Scholar 

  • Wu QH, Wang X, Yang W, Nussler AK, Xiong LY, Kuca K, Dohnal V, Zhang XJ, Yuan ZH (2014) Oxidative stress-mediated cytotoxicity and metabolism of T-2 toxin and deoxynivalenol in animals and humans: an update. Arch Toxicol 88(7):1309–1326. https://doi.org/10.1007/s00204-014-1280-0

    Article  CAS  PubMed  Google Scholar 

  • Wu Q, Wang X, Nepovimova E, Miron A, Liu Q, Wang Y, Su D, Yang H, Li L, Kuca K (2017) Trichothecenes: immunomodulatory effects, mechanisms, and anti-cancer potential. Arch Toxicol 91(12):3737–3785

    Article  CAS  PubMed  Google Scholar 

  • Yang S, Li Y, Cao X, Hu D, Wang Z, Wang Y, Shen J, Zhang S (2013) Metabolic pathways of T-2 toxin in in vito and in vitro systems of Wistar rats. J Agric Food Chem 61:9734–9743

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Yang W, Feng Q, Huang L, Zhang G, Liu F, Jiang S, Yang Z (2016) Effects of purified zearalenone on selected immunological measurements of blood in post-weaning gilts. Anim Nutr 2(3):142–148. https://doi.org/10.1016/j.aninu.2016.04.008

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang S, De Boevre M, Zhang H, De Ruyck K, Sun F, Zhang J, Jin Y, Li Y, Wang Z, Zhang S, Zhou J, Li Y, De Saeger S (2017) Metabolism of T-2 toxin in farm animals and human in vitro and in chickens in vivo using ultra high-performance liquid chromatography- quadrupole/time-of-flight hybrid mass spectrometry along with online hydrogen/deuterium exchange technique. J Agric Food Chem 65(33):7217–7227

    Article  CAS  PubMed  Google Scholar 

  • Yang LJ, Zhou M, Huang LB, Yang WR, Yang ZB, Jiang SZ, Ge JS (2018a) Zearalenone-promoted follicle growth through modulation of Wnt-1/beta-catenin signaling pathway and expression of estrogen receptor genes in ovaries of postweaning piglets. J Agric Food Chem 66(30):7899–7906. https://doi.org/10.1021/acs.jafc.8b02101

    Article  CAS  PubMed  Google Scholar 

  • Yang YX, Yu S, Liu N, Xu HB, Gong YY, Wu YN, Wang PL, Su XO, Liao YC, De Saeger S, Humpf HU, Wu AB (2018b) Transcription factor FOXO3a is a negative regulator of cytotoxicity of fusarium mycotoxin in GES-1 cells. Toxicol Sci 166(2):370–381. https://doi.org/10.1093/toxsci/kfy216

    Article  CAS  PubMed  Google Scholar 

  • Yiannikouris A, Jouany JP (2002) Mycotoxins in feeds and their fate in animals: a review. Anim Res 51:81–99

    Article  CAS  Google Scholar 

  • Young JC, Zhou TD, Yu H, Zhou H, Gong J (2007) Degradation of trichothecene mycotoxins by chicken intestinal microbes. Food Chem Toxicol 45:136–143

    Article  CAS  PubMed  Google Scholar 

  • Yunus AW, Blajet-Kosicka A, Kosicki R (2012) Deoxynivalenol as a contaminant of broiler feed: intestinal development, absorptive functionality, and metabolism of the mycotoxin. Poult Sci 91(4):852–861

    Article  CAS  PubMed  Google Scholar 

  • Zhang GL, Song JL, Ji CL, Feng YL, Yu J, Nyachoti CM, Yang GS (2018) Zearalenone exposure enhanced the expression of tumorigenesis genes in donkey granulosa cells via the PTEN/PI3K/AKT signaling pathway. Front Genet 9:293. https://doi.org/10.3389/fgene.2018.00293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zinedine A, Soriano JM, Molto JC, Manes J (2007) Review on the toxicity, occurrence, metabolism, detoxification, regulations and intake of zearalenone: an oestrogenic mycotoxin. Food Chem Toxicol 45(1):1–18. https://doi.org/10.1016/j.fct.2006.07.030

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aibo Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jia, B., Yu, S., Wu, Q., Wu, A. (2019). Metabolism of Mycotoxins and the Potential Biomarkers for Risk Assessment. In: Wu, A. (eds) Food Safety & Mycotoxins. Springer, Singapore. https://doi.org/10.1007/978-981-32-9038-9_5

Download citation

Publish with us

Policies and ethics