Skip to main content

Synthetic Biology of Active Compounds

  • Chapter
  • First Online:
Molecular Pharmacognosy
  • 565 Accesses

Abstract

Synthetic biology is a rising discipline that combines biology, chemistry, computer science, engineering, and physics. In the early twentieth century, French physical chemist Stephane Leduc [1] put forward the idea that life can be simplified into a chemical reaction in his book The Mechanism of Life; however, because people’s understanding has stayed at the early biological research stage, the level of understanding of molecular biology is insufficient, and synthetic biology has not been developed. Until 1962, Francois Jacob and Jacques Monod [2] proposed an operon model for E. coli gene expression, which was favoured by researchers for its precise regulation. With the rapid development of recombinant DNA technology in the 1970s and high-throughput sequencing in the 1980s, the construction of artificial biological systems has gradually changed from idea to reality, and people’s understanding of synthetic biology has gradually deepened. In 1980, German scientist Barbara H-bomb [3] defined synthetic biology as a gene for bacteria using recombinant DNA technology in his long-form paper “Gene Surgery: On the Threshold of Synthetic Biology”. In January 2000, Nature published two studies on the construction of the first artificial bistable gene regulatory network and synthetic gene oscillator in E. coli [4, 5]. So far, synthetic biology remains a new field. In the same year, Eric Kool and other spokespersons reintroduced the concept of synthetic biology at the American Chemical Society, defining synthetic biology as genetic engineering based on systems biology, from artificial base DNA molecules, gene fragments, gene regulatory networks with signal transduction pathways, to artificial design and synthesis in cells. There are many different opinions on the definition of synthetic biology; nowadays, scholars generally recognize that the use of engineering concepts rationally synthesizes complex, biologically meaningful systems of different levels, from individual biomolecules, to whole cells, tissues, and organs. Importantly, these biological systems can perform functions not found in nature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Leduc S, Butcher WD. The mechanism of life. Br Med J. 1923;58:141.

    Google Scholar 

  2. Jacob F, Monod J. Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol. 1961;3:318–56.

    Article  CAS  Google Scholar 

  3. Hobom B. Gene surgery: on the threshold of synthetic biology. Med Klin. 1980;75:834.

    CAS  PubMed  Google Scholar 

  4. Gardner TS, Cantor CR, Collins JJ. Construction of a genetic toggle switch in Escherichia coli. Nature. 2000;403:339.

    Article  CAS  Google Scholar 

  5. Elowitz MB, Leibler S. A synthetic oscillatory network of transcriptional regulators. Nature. 2000;403:335–8.

    Article  CAS  Google Scholar 

  6. Ewen CD, Caleb JB, James JC. A brief history of synthetic biology. Nat Rev Microbiol. 2014;12:381–90.

    Article  Google Scholar 

  7. Paddon CJ, Westfall PJ, Pitera DJ, Benjamin K, Fisher K, Mcphee D, Leavell MD, Tai A, Main A, Eng D. High-level semi-synthetic production of the potent antimalarial artemisinin. Nature. 2013;496:528.

    Article  CAS  Google Scholar 

  8. Patel RN, Banerjee A, Howell JM, Mcnamee CG, Brozozowski D, Mirfakhrae D, Nanduri V, Thottathil JK, Szarka LJ. Microbial synthesis of (2R,3S)-(−)-N-benzoyl-3-phenyl isoserine ethyl ester-a taxol side-chain synthon. ChemInform. 2010;25. no–no

    Article  Google Scholar 

  9. Ro DK, Paradise EM, Ouellet M, Fisher KJ, Newman KL, Ndungu JM, Ho KA, Eachus RA, Ham TS, Kirby J. Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature. 2006;440:940–3.

    Article  CAS  Google Scholar 

  10. Parayil Kumaran A, Wen-Hai X, Tyo KEJ, Yong W, Fritz S, Effendi L, Oliver M, Too Heng P, Blaine P, Gregory S. Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli. Science. 2010;330:70–4.

    Article  Google Scholar 

  11. Zhou YJ, Wei G, Qixian R, Guojie J, Huiying C, Wujun L, Wei Y, Zhiwei Z, Guohui L, Guofeng Z. Modular pathway engineering of diterpenoid synthases and the mevalonic acid pathway for miltiradiene production. J Am Chem Soc. 2012;134:3234–41.

    Article  CAS  Google Scholar 

  12. Vjj M, Pitera DJWithers ST, Newman JD, Keasling JD. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotechnol. 2003;21:796–802.

    Article  Google Scholar 

  13. Tsuruta H, Paddon CJ, Eng D, Lenihan JR, Horning T, Anthony LC, Regentin R, Keasling JD, Renninger NS, Newman JD. High-level production of Amorpha-4,11-diene, a precursor of the antimalarial agent artemisinin, in Escherichia coli. PLoS One. 2009;4:e4489.

    Article  Google Scholar 

  14. Westfall PJ, Pitera DJ, Lenihan JR, Eng D, Woolard FX, Regentin R, Horning T, Tsuruta H, Melis DJ, Owens A. Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin. Proc Natl Acad Sci U S A. 2012;109:655–6.

    Article  CAS  Google Scholar 

  15. Juan G, Zhou YJ, Hillwig ML, Ye S, Lei Y, Yajun W, Xianan Z, Wujun L, Peters RJ, Xiaoya C. CYP76AH1 catalyzes turnover of miltiradiene in tanshinones biosynthesis and enables heterologous production of ferruginol in yeasts. PNAS. 2013;110:12108–13.

    Article  Google Scholar 

  16. Dai Z, Liu Y, Huang L, Zhang X. Production of miltiradiene by metabolically engineered Saccharomyces cerevisiae. Biotechnol Bioeng. 2012;109:2845–53.

    Article  CAS  Google Scholar 

  17. Guo J, Ma X, Cai Y, Ma Y, Zhan Z, Zhou YJ, Liu W, Guan M, Yang J, Cui G. Cytochrome P450 promiscuity leads to a bifurcating biosynthetic pathway for tanshinones. New Phytol. 2016;210:525–34.

    Article  CAS  Google Scholar 

  18. Kim DH, Kim BG, Jung NR, Ahn JH. Production of genistein from naringenin using Escherichia coli containing isoflavone synthase-cytochrome P450 reductase fusion protein. J Microbiol Biotechnol. 2009;19:1612–6.

    Article  CAS  Google Scholar 

  19. Trantas E, Panopoulos N, Ververidis F. Metabolic engineering of the complete pathway leading to heterologous biosynthesis of various flavonoids and stilbenoids in Saccharomyces cerevisiae. Metab Eng. 2009;11:355–66.

    Article  CAS  Google Scholar 

  20. Hawkins K, Smolke C. Production of benzylisoquinoline alkaloids in Saccharomyces cerevisiae. Nat Chem Biol. 2008;4:564–73.

    Article  CAS  Google Scholar 

  21. Fossati E, Ekins A, Narcross L, Zhu Y, Falgueyret JP, Beaudoin GAW, Facchini PJ, Martin VJJ. Reconstitution of a 10-gene pathway for synthesis of the plant alkaloid dihydrosanguinarine in Saccharomyces cerevisiae. Nat Commun. 2014;5:3283.

    Article  Google Scholar 

  22. Mercke P, Bengtsson M, Bouwmeester HJ, Posthumus MA, Brodelius PE. Molecular cloning, expression, and characterization of amorpha-4,11-diene synthase, a key enzyme of artemisinin biosynthesis in Artemisia annua L. Arch Biochem Biophys. 2000;381:173–80.

    Article  CAS  Google Scholar 

  23. Stephen GA, Jodie Y, Andrew W, Yue W, Srinivas C, Rupeng Z, Patina MH, Yenphuong TT, Qinghai Z, Ina LU. Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. Science. 2009;323:1718–22.

    Article  Google Scholar 

  24. Bill RM, Henderson PJF, So I, Kunji ERS, Hartmut M, Richard N, Simon N, Bert P, Tate CG, Horst V. Overcoming barriers to membrane protein structure determination. Nat Biotechnol. 2011;29:335–40.

    Article  CAS  Google Scholar 

  25. Chen S, Xu J, Liu C, Zhu Y, Nelson DR, Zhou S, Li C, Wang L, Guo X, Sun Y, Luo H, Li Y, Song J, Henrissat B, Levasseur A, Qian J, Li J, Luo X, Shi L, He L, Xiang L, Xu X, Niu Y, Li Q, Han MV, Yan H, Zhang J, Chen H, Lv A, Wang Z, Liu M, Schwartz DC, Sun C. Genome sequence of the model medicinal mushroom Ganoderma lucidum. Nat Commun. 2012;3:913.

    Article  Google Scholar 

  26. Krivoruchko A, Nielsen J. Production of natural products through metabolic engineering of Saccharomyces cerevisiae. Curr Opin Biotechnol. 2015;35:7–15.

    Article  CAS  Google Scholar 

  27. Heckman KL, Pease LR. Gene splicing and mutagenesis by PCR-driven overlap extension. Nat Protoc. 2007;2:924–32.

    Article  CAS  Google Scholar 

  28. Røkke G, Korvald E, Pahr J, Øyås O, Lale R. BioBrick assembly standards and techniques and associated software tools. Methods Mol Biol. 2014;1116:1.

    Article  Google Scholar 

  29. Walhout AJM, Temple GF, Brasch MA, Hartley JL, Lorson MA, Heuvel SVD, Vidal M. [34] GATEWAY recombinational cloning: application to the cloning of large numbers of open reading frames or ORFeomes. Methods Enzymol. 2000;328:575–92.

    Article  CAS  Google Scholar 

  30. Effendi L, Kok-Hong L, Phan-Nee S, Koffas MAG. Engineering central metabolic pathways for high-level flavonoid production in Escherichia coli. Appl Environ Microbiol. 2007;73:3877–86.

    Article  Google Scholar 

  31. Yechun W, Hankuil Y, Melissa W, Oliver Y, Jez JM. Structural and kinetic analysis of the unnatural fusion protein 4-coumaroyl-CoA ligase::stilbene synthase. J Am Chem Soc. 2011;133:20684–7.

    Article  Google Scholar 

  32. Yang Y, Lin Y, Li L, Linhardt RJ, Yan Y. Regulating malonyl-CoA metabolism via synthetic antisense RNAs for enhanced biosynthesis of natural products. Metab Eng. 2015;29:217–26.

    Article  CAS  Google Scholar 

  33. Baadhe RR, Mekala NK, Parcha SR, Prameela DY. Combination of ERG9 repression and enzyme fusion technology for improved production of amorphadiene in Saccharomyces cerevisiae. J Anal Methods Chem. 2013;2013:140469.

    Article  Google Scholar 

  34. Jing-Yuan XU, Zhu Y, Ze YI, Gang WU, Xie GY, Qin MJ. Molecular diversity analysis of Tetradium ruticarpum (WuZhuYu) in China based on inter-primer binding site (iPBS) markers and inter-simple sequence repeat (ISSR) markers. Chin J Nat Med. 2018;16:1–9.

    Google Scholar 

  35. Ajikumar PK, Xiao WH, Tyo KEJ, Wang Y, Simeon F, Leonard E, Mucha O, Phon TH, Pfeifer B, Stephanopoulos G. Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli. Science. 2010;330:70–4.

    Article  CAS  Google Scholar 

  36. Ma XH, Ma Y, Tang JF, He YL, Liu YC, Ma XJ, Shen Y, Cui GH, Lin HX, Rong QX. The biosynthetic pathways of tanshinones and phenolic acids in Salvia miltiorrhiza. Molecules. 2015;20:16235.

    Article  CAS  Google Scholar 

  37. Paddon CJ, Keasling JD. Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development. Nat Rev Microbiol. 2014;12:355.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.and Shanghai Scientific and Technical Publishers

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, Y., Jia, M., Gao, W. (2019). Synthetic Biology of Active Compounds. In: Huang, Lq. (eds) Molecular Pharmacognosy. Springer, Singapore. https://doi.org/10.1007/978-981-32-9034-1_9

Download citation

Publish with us

Policies and ethics