Skip to main content

Molecular Mechanisms and Gene Regulation for Biosynthesis of Medicinal Plant Active Ingredients

  • Chapter
  • First Online:
Molecular Pharmacognosy
  • 535 Accesses

Abstract

This chapter introduces the basic principles and methods for the studies on molecular mechanisms and gene regulation for the biosynthesis of medicinal plant active ingredients, including the biosynthetic pathway, functional genes related to biosynthesis, and manual gene regulation for the biosynthesis of active ingredients in medicinal plants. In addition, the authors explain the problems in gene cloning, stability, and transportation and propose development prospects and research directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guo L, Winzer T, Yang X, et al. The opium poppy genome and morphinan production. Science. 2018;10:1126.

    Google Scholar 

  2. Kutchan TM. Alkaloid biosynthesis—the basic for metabolic engineering of medicinal plants. Plant Cell. 1995;7:1059–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Luca VD, Pierre BS. The cell and developmental biology of alkaloid biosynthesis. Trends Plant Sci. 2000;5(4):168–73.

    Article  PubMed  Google Scholar 

  4. World Health Organization. http://www.who.int/malaria/publications/world-malaria-report-2017/report/en/ (2017)

  5. The Nobel Prize in Physiology or Medicine.. Nobel Foundation. Retrieved 2015-10-07 (2015).

    Google Scholar 

  6. Efferth T. Molecular pharmacology and pharmacogenomics of artemisinin and its derivatives in cancer cells. Curr Drug Targets. 2006;7:407–21.

    Article  CAS  PubMed  Google Scholar 

  7. Tin AS, Sundar SN, Tran KQ, et al. Antiproliferative effects of artemisinin on human breast cancer cells requires the downregulated expression of the E2F1 transcription factor and loss of E2F1-target cell cycle genes. Anti-Cancer Drugs. 2012;23:370–9.

    Article  CAS  PubMed  Google Scholar 

  8. Zheng H, Colvin CJ, Johnson BK, et al. Inhibitors of Mycobacterium tuberculosis DosRST signaling and persistence. Nat Chem Biol. 2017;13:218–25.

    Article  CAS  PubMed  Google Scholar 

  9. Li J, Casteels T, Frogne T, et al. Artemisinins target GABAA receptor signaling and impair a cell identity. Cell. 2017;168:86–100.e15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. A2S2.. http://www.a2s2.org/market-data/artemisinin-imports-into-india.html (2016)

  11. Shen Q, Zhang L, Liao Z, et al. The genome of Artemisia annua provides insight into the evolution of Asteraceae family and artemisinin biosynthesis. Mol Plant. 2018;11:776–88.

    Article  CAS  PubMed  Google Scholar 

  12. Nafis T, Akmal M, Ram M, et al. Enhancement of artemisinin content by constitutive expression of the HMG-CoA reductase gene in high-yielding strain of Artemisia annua L. Plant Biotechnol Rep. 2011;5:53–60.

    Article  Google Scholar 

  13. Ma D, Wang Z, Wang L, et al. A genome-wide scenario of terpene pathways in self-pollinated Artemisia annua. Mol Plant. 2015;8:1580–98.

    Article  CAS  PubMed  Google Scholar 

  14. Tan H, Xiao L, Gao S, et al. TRICHOME AND ARTEMISININ REGULATOR 1 is required for trichome development and artemisinin biosynthesis in Artemisia annua. L Mol Plant. 2015;8:1396–411.

    Article  CAS  Google Scholar 

  15. Yu ZX, Li JX, Yang CQ, et al. The jasmonate-responsive AP2/ERF transcription factors AaERF1 and AaERF2 positively regulate artemisinin biosynthesis in Artemisia annua L. Mol Plant. 2012;5:353–65.

    Article  CAS  PubMed  Google Scholar 

  16. Yan T, Li L, Xie L, et al. A novel HD-ZIP IV/MIXTA complex promotes glandular trichome initiation and cuticle development in Artemisia annua. New Phytol. 2018;218(2):567–78. https://doi.org/10.1111/nph.15005.

    Article  CAS  PubMed  Google Scholar 

  17. Zhang F, Fu X, Lv Z, et al. A basic leucine zipper transcription factor, AabZIP1, connects abscisic acid signaling with artemisinin biosynthesis in Artemisia annua. Mol Plant. 2015;8:163–75.

    Article  CAS  PubMed  Google Scholar 

  18. Shen Q, Lu X, Yan T, et al. The jasmonate-responsive AaMYC2 transcription factor positively regulates artemisinin biosynthesis in Artemisia annua. New Phytol. 2016;210:1269–81.

    Article  CAS  PubMed  Google Scholar 

  19. Ma YN, Xu DB, Tang KX, et al. Jasmonate promotes artemisinin biosynthesis by activating the TCP14-ORA complex in Artemisia annua. Sci Adv. 2018;4(11):eaas9357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Han J, Wang H, Kanagarajan S, et al. Promoting artemisinin biosynthesis in Artemisia annua plants by substrate channeling. Mol Plant. 2016;9:946–8.

    Article  CAS  PubMed  Google Scholar 

  21. Fuentes P, Zhou F, Erban A, et al. A new synthetic biology approach allows transfer of an entire metabolic pathway from a medicinal plant to a biomass crop. elife. 2016;5:e13664. https://doi.org/10.7554/eLife.13664.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Malhotra K, Subramaniyan M, Rawat K, et al. Compartmentalized metabolic engineering for artemisinin biosynthesis and effective malaria treatment by oral delivery of plant cells. Mol Plant. 2016;9:1464–77.

    Article  CAS  PubMed  Google Scholar 

  23. Cho K, Mahieu N, Ivanisevic J, et al. isoMETLIN: a database for isotope-based metabolomics. Anal Chem. 2014;86(19):9358–61. https://doi.org/10.1021/ac5029177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zou LQ, Kuang XJ, Sun C, et al. Strategies of elucidation of biosynthetic pathways of natural products. Zhongguo Zhong Yao Za Zhi. 2016;41(22):4119–23. https://doi.org/10.4268/cjcmm20162206.

    Article  PubMed  Google Scholar 

  25. Oliveira C, Aguiar TQ, Domingues L. Principles of genetic engineering. Oxford: Elsevier; 2017.

    Book  Google Scholar 

  26. Corey EJ, Matsuda SPT, Bartel B. Isolation of an Arabidopsis thaliana gene encoding cycloartenol synthase by functional expression in a yeast mutant lacking lanosterol synthase by the use of a chromatographic screen. Proc Natl Acad Sci U S A. 1993;90:11628–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Vetter HP, Mangold U, Schroder G, et al. Molecular analysis and heterologous expression of an inducible cytochrome P-450 protein from periwinkle (Catharanthus roseus L.). Plant Physiol. 1992;100:998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wei YT. Principles and techniques of gene engineering. Beijing: Peking University Press; 2017.

    Google Scholar 

  29. Liu CX, Luo SZ. Experimental techniques of molecular biology. Beijing: Chemical Industry Press; 2018.

    Google Scholar 

  30. Lois AF, West CA. Regulation of expression of the casbene synthetase gene during elicitation of castor bean seedlings with pectic fragments. Arch Biochem Bilphys. 1990;276:270–7.

    Article  CAS  Google Scholar 

  31. Dos Santos R, Schripdema J, Verpoorte R. Ajmalicine metabolism in Catharanthus roseus cell cultures. Phytochemistry. 1994;35:677–81.

    Article  CAS  Google Scholar 

  32. Wang GY, Fang HJ. Plant genetic engineering. Beijing: Science Press; 2018.

    Google Scholar 

  33. Qiu DY, Zhu C, Zhu ZQ. Production of Trichosanthin from the hairy roots of Trichosanthes kirilowii Maxim. Acta Bot Sin. 1996;6:439–43.

    Google Scholar 

  34. Zhou LG, Wang JJ, Yang CR. Progress on plant hairy root culture and its chemistry. Nat Prod Res Dev. 1998;3:87–95.

    Google Scholar 

  35. Oksman-Caldentey KM, Inze´ D. Plant cell factories in the post-genomic era: new ways to produce designer secondary metabolites. Trends Plant Sci. 2004;9(9):433–40.

    Article  CAS  PubMed  Google Scholar 

  36. Oostdam A, Mol JNM, van der Plas LHW. Establishment of hairy root cultures of Linum flavum producing the lignan 5-methoxypodophyllotoxin. Plant Cell Rep. 1993;12:474–7.

    Article  CAS  PubMed  Google Scholar 

  37. Van der Krol AR, Lenting PE, Veenstra J, et al. An antisense chalcone synthase gene in transgenic plants inhibits flower pigmentation. Nature. 1988;333:866–9.

    Article  Google Scholar 

  38. Waterhouse PM, Graham MW, Wang MB. Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proc Natl Acad Sci U S A. 1998;95:13959–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cogoni C, Macino G. Conservation of transgene-induced post-transcriptional gene silencing in plants and fungi. Trends Plant Sci. 1997;2:438–43.

    Article  Google Scholar 

  40. Fire A, Xu S, Montagomery MK, et al. Potent and specific genetic interference by double-stranded in Caenorhabditis elegans. Nature. 1998;391:860–11.

    Article  Google Scholar 

  41. Chuang CF, Meyerowitz EM. Specific and heritable genetic interference by double- stranded RNA in Arabidopsis thaliana. Proc Natl Acad Sci USA. 2000;97:4985–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Schweizer P, Pokorny J, Schulze P, et al. Double-stranded RNA interference with gene function at the single-cell level in cereals. Plant J. 2000;6:895–903.

    Article  Google Scholar 

  43. Wang E, Wagner GJ. Elucidation of the functions of genes central to diterpene metabolism in tobacco trichomes using posttranscriptional gene silencing. Planta. 2003;216:686–91.

    CAS  PubMed  Google Scholar 

  44. Ogita S, Uefuji H, Yamaguchi Y, et al. Producing decaffeinated coffee plants. Nature. 2003;423:823.

    Article  CAS  PubMed  Google Scholar 

  45. Davuluri GR, van Tuinen A, Fraser PD, et al. Fruit-specific RNAi-mediated suppression of DET1 enhances carotenoid and flavonoid content in tomatoes. Nat Biotechnol. 2005;23(7):890–5.

    Article  CAS  PubMed  Google Scholar 

  46. Mangold U, Eichel J, Batschauer A, et al. Gene and cDNA for plant cytochrome P450 proteins (CYP72 family) from Catharanthus roseus, and transgenic expression of the gene and a cDNA in tobacco and Arabidopsis thaliana. Plant Sci. 1994;96:129–36.

    Article  CAS  Google Scholar 

  47. Verpoorte R, van der Heijden R, Ten Hoopen HJG, et al. Metabolic engineering of plant secondary metabolite pathways for the production of fine chemicals. Biotechnol Lett. 1999;6:467–79.

    Article  Google Scholar 

  48. Zhang W, Curtin C, Franco C. Towards manipulation of post-biosynthetic events in secondary metabolism of plant cell cultures. Enzym Microb Technol. 2002;30:688–96.

    Article  CAS  Google Scholar 

  49. Blom TJM, Sierra M, van Vliet TB, et al. Uptake and accumulation of ajmalicine into isolated vacuoles of cultured cells of Catharanthus roseus (L.) G. Don. and its conversion into serpentine. Planta. 1991;183:170–7.

    Article  CAS  PubMed  Google Scholar 

  50. Zhou L, Zuo Z, Chow MS. Danshen: an overview of its chemistry, pharmacology, pharmacokinetics, and clinical use. J Clin Pharmacol. 2005;45:1345–59.

    Article  CAS  PubMed  Google Scholar 

  51. Yuan Y, Liu Y, Lu D, et al. Genetic stability, active constituent, and pharmacoactivity of Salvia miltiorrhiza hairy roots and wild plant. Z Naturforsch C. 2009;64:557–63.

    Article  CAS  PubMed  Google Scholar 

  52. Guo J, Zhou YJ, Hillwig ML, et al. CYP76AH1 catalyzes turnover of miltiradiene in tanshinones biosynthesis and enables heterologous production of ferruginol in yeasts. Proc Natl Acad Sci U S A. 2013;110(29):12108–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cyr A, Wilderman PR, Determan M, et al. A modular approach for facile biosynthesis of labdane-related diterpenes. J Am Chem Soc. 2007;129(21):6684–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cui G, Huang L, Tang X, et al. Candidate genes involved in tanshinone biosynthesis in hairy roots of Salvia miltiorrhiza revealed by cDNA microarray. Mol Biol Rep. 2011;38(4):2471–8.

    Article  CAS  PubMed  Google Scholar 

  55. Wang JW, Wu JY. Tanshinone biosynthesis in Salvia miltiorrhiza and production in plant tissue cultures. Appl Microbiol Biotechnol. 2010;88(2):437–49.

    Article  CAS  PubMed  Google Scholar 

  56. Hamberger B, Ohnishi T, Hamberger B, et al. Evolution of diterpene metabolism: Sitka spruce CYP720B4 catalyzes multiple oxidations in resin acid biosynthesis of conifer defense against insects. Plant Physiol. 2011;157(4):1677–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ro DK, Arimura G, Lau SY, et al. Loblolly pine abietadienol/abietadienal oxidase PtAO (CYP720B1) is a multifunctional, multisubstrate cytochrome P450 monooxygenase. Proc Natl Acad Sci U S A. 2005;102(22):8060–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wilderman PR, Xu M, Jin Y, et al. Identification of syn-pimara- 7,15-diene synthase reveals functional clustering of terpene synthases involved in rice phytoalexin/allelochemical biosynthesis. Plant Physiol. 2004;135(4):2098–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Xu M, Hillwig ML, Prisic S, et al. Functional identification of rice syn-copalyl diphosphate synthase and its role in initiating biosynthesis of diterpenoid phytoalexin/allelopathic natural products. Plant J. 2004;39(3):309–18.

    Article  CAS  PubMed  Google Scholar 

  60. Ma Y, Yuan L, Wu B, et al. Genome-wide identification and characterization of novel genes involved in terpenoid biosynthesis in Salvia miltiorrhiza. J Exp Bot. 2012;63(7):2809–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Xu H, Song J, Luo H, et al. Analysis of the Genome Sequence of the Medicinal Plant Salvia miltiorrhiza. Mol Plant. 2016;9(6):949–52. https://doi.org/10.1016/j.molp.2016.03.010.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.and Shanghai Scientific and Technical Publishers

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, L., Tan, H., Zerbe, P. (2019). Molecular Mechanisms and Gene Regulation for Biosynthesis of Medicinal Plant Active Ingredients. In: Huang, Lq. (eds) Molecular Pharmacognosy. Springer, Singapore. https://doi.org/10.1007/978-981-32-9034-1_8

Download citation

Publish with us

Policies and ethics