Skip to main content

Nothobranchius furzeri as a New Model System for Ageing Studies

  • Chapter
  • First Online:
Models, Molecules and Mechanisms in Biogerontology

Abstract

Ageing can be defined as the age-progressive decline in intrinsic physiological function, leading to an increase in age-specific mortality rate.

To date, the mechanisms responsible for natural variation in lifespan and the evolution of longevity are poorly understood, especially in vertebrates. A major limitation is given by the lack of suitable experimental models for ageing studies in terms of limited survival and genetic manageability.

Nothobranchius furzeri is an African annual fish known to be actually the shortest-lived vertebrate raised in laboratory and validated in the last decade as new promising model for ageing research: its lifespan can be modulated by environmental, pharmacological and dietary manipulations, and it shows most of the major ageing markers described in mammals (SA-beta galactosidase, lipofuscin, brain gliosis, etc.); the genome, the transcriptome and the proteome of this species are actually available, and RNA-seq analysis has shown a strong evolutionary conservation of many age-related gene pathways and patterns of transcripts regulation. Moreover, it is amenable to genetic manipulation and in the last years the CRISPR/Cas9 technology has been developed in this organism. In addition, its short lifespan allows to perform longitudinal studies in a manageable time frame, giving the opportunity to investigate the relationship between non-genetic lifespan variation and individual ageing.

For all these reasons, this animal model represents an ideal platform to rapidly assess the impact of genetic manipulations on vertebrate ageing and age-associated pathologies.

Nothobranchius furzeri is also a model for evolutionary genetics of ageing: indeed, it has been observed that geographic differences in habitat duration led to the evolution of a different rate of senescence and expression of ageing markers in Nothobranchius species from humid versus arid habitats, and finally a clear example of parallel evolution has been demonstrated for different populations belonging to two evolutionary independent Nothobranchius lineages.

Finally, Nothobranchius furzeri strains show genetic differences in captive lifespan and a quantitative trait loci (QTL) approach was applied to map loci responsible for lifespan differences. This approach clearly showed that the basis for interstrain differences in lifespan is polygenic and also suggests that heritability of lifespan is low (as observed in humans). Therefore, this fish can be used to investigate the quantitative genetics of ageing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. de Cabo R, Carmona-Gutierrez D, Bernier M, Hall MN, Madeo F. The search for antiaging interventions: from elixirs to fasting regimens. Cell. 2014;157:1515–26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Pincus Z, Smith-Vikos T, Slack FJ. MicroRNA predictors of longevity in Caenorhabditis elegans. PLoS Genet. 2011;7:e1002306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rea SL, Wu D, Cypser JR, Vaupel JW, Johnson TE. A stress-sensitive reporter predicts longevity in isogenic populations of Caenorhabditis elegans. Nat Genet. 2005;37:894–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Shen EZ, Song CQ, Lin Y, Zhang WH, Su PF, Liu WY, Zhang P, Xu J, Lin N, Zhan C, Wang X, Shyr Y, Cheng H, Dong MQ. Mitoflash frequency in early adulthood predicts lifespan in Caenorhabditis elegans. Nature. 2014;508:128–32.

    Article  CAS  PubMed  Google Scholar 

  5. Harrison DE, Strong R, Sharp ZD, Nelson JF, Astle CM, Flurkey K, Nadon NL, Wilkinson JE, Frenkel K, Carter CS, Pahor M, Javors MA, Fernandez E, Miller RA. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature. 2009;460:392–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Valenzano DR, Terzibasi E, Genade T, Cattaneo A, Domenici L, Cellerino A. Resveratrol prolongs lifespan and retards the onset of age-related markers in a short-lived vertebrate. Curr Biol. 2006b;16:296–300.

    Article  CAS  PubMed  Google Scholar 

  7. Ng’oma E, Reichwald K, Dorn A, Wittig M, Balschun T, Franke A, Platzer M, Cellerino A. The age related markers lipofuscin and apoptosis show different genetic architecture by QTL mapping in short-lived Nothobranchius fish. Aging (Albany NY). 2014;6:468–80.

    Article  Google Scholar 

  8. Steves CJ, Spector TD, Jackson SH. Ageing, genes, environment and epigenetics: what twin studies tell us now, and in the future. Age Ageing. 2012;41:581–6.

    Article  PubMed  Google Scholar 

  9. Houtkooper RH, Mouchiroud L, Ryu D, Moullan N, Katsyuba E, Knott G, Williams RW, Auwerx J. Mitonuclear protein imbalance as a conserved longevity mechanism. Nature. 2013;497:451–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cellerino A, Valenzano DR, Reichard M. From the bush to the bench: the annual Nothobranchius fishes as a new model system in biology. Biol Rev Camb Philos Soc. 2016;91:511–33.

    Article  PubMed  Google Scholar 

  11. Fontana L, Partridge L, Longo VD. Extending healthy life span--from yeast to humans. Science. 2010;328:321–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Johnson SC, Rabinovitch PS, Kaeberlein M. mTOR is a key modulator of ageing and age-related disease. Nature. 2013;493:338–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jeck WR, Siebold AP, Sharpless NE. Review: a meta-analysis of GWAS and age-associated diseases. Aging Cell. 2012;11:727–31.

    Article  CAS  PubMed  Google Scholar 

  14. Howe K, et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature. 2013;496:498–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hwang WY, Fu Y, Reyon D, Maeder ML, Tsai SQ, Sander JD, Peterson RT, Yeh JR, Joung JK. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol. 2013;31:227–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lieschke GJ, Currie PD. Animal models of human disease: zebrafish swim into view. Nat Rev Genet. 2007;8:353–67.

    Article  CAS  PubMed  Google Scholar 

  17. Gerhard GS, Kauffman EJ, Wang X, Stewart R, Moore JL, Kasales CJ, Demidenko E, Cheng KC. Life spans and senescent phenotypes in two strains of zebrafish (Danio rerio). Exp Gerontol. 2002;37:1055–68.

    Article  PubMed  Google Scholar 

  18. Hatakeyama H, Nakamura K, Izumiyama-Shimomura N, Ishii A, Tsuchida S, Takubo K, Ishikawa N. The teleost Oryzias latipes shows telomere shortening with age despite considerable telomerase activity throughout life. Mech Ageing Dev. 2008;129:550–7.

    Article  CAS  PubMed  Google Scholar 

  19. Valdesalici S, Cellerino A. Extremely short lifespan in the annual fish Nothobranchius furzeri. Proc R Soc Lond B Biol Sci. 2003;270(Suppl 2):S189–91.

    Google Scholar 

  20. Callaway E. Short-lived fish may hold clues to human ageing. Nature. 2015;528:175.

    Article  CAS  PubMed  Google Scholar 

  21. Dance A. Live fast, die young. Nature. 2016;535:453–5.

    Article  CAS  PubMed  Google Scholar 

  22. Lakhina V, Murphy CT. Genome sequencing fishes out longevity genes. Cell. 2015;163:1312–3.

    Article  CAS  PubMed  Google Scholar 

  23. Lieben L. Genomics: fishing for the ageing secret. Nat Rev Genet. 2016;17:69.

    CAS  PubMed  Google Scholar 

  24. Wang AM, Promislow DE, Kaeberlein M. Fertile waters for aging research. Cell. 2015;160:814–5.

    Article  CAS  PubMed  Google Scholar 

  25. Di Cicco E, Tozzini ET, Rossi G, Cellerino A. The short-lived annual fish Nothobranchius furzeri shows a typical teleost aging process reinforced by high incidence of age-dependent neoplasias. Exp Gerontol. 2011;46:249–56.

    Article  PubMed  Google Scholar 

  26. Terzibasi E, Valenzano DR, Benedetti M, Roncaglia P, Cattaneo A, Domenici L, Cellerino A. Large differences in aging phenotype between strains of the short-lived annual fish Nothobranchius furzeri. PLoS One. 2008;3:e3866.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Hartmann N, Reichwald K, Lechel A, Graf M, Kirschner J, Dorn A, Terzibasi E, Wellner J, Platzer M, Rudolph KL, Cellerino A, Englert C. Telomeres shorten while Tert expression increases during ageing of the short-lived fish Nothobranchius furzeri. Mech Ageing Dev. 2009;130:290–6.

    Article  CAS  PubMed  Google Scholar 

  28. Hartmann N, Reichwald K, Wittig I, Drose S, Schmeisser S, Luck C, Hahn C, Graf M, Gausmann U, Terzibasi E, Cellerino A, Ristow M, Brandt U, Platzer M, Englert C. Mitochondrial DNA copy number and function decrease with age in the short-lived fish Nothobranchius furzeri. Aging Cell. 2011;10:824–31.

    Article  CAS  PubMed  Google Scholar 

  29. Tozzini ET, Baumgart M, Battistoni G, Cellerino A. Adult neurogenesis in the short-lived teleost Nothobranchius furzeri: localization of neurogenic niches, molecular characterization and effects of aging. Aging Cell. 2012;11:241–51.

    Article  CAS  PubMed  Google Scholar 

  30. Baumgart M, Groth M, Priebe S, Appelt J, Guthke R, Platzer M, Cellerino A. Age-dependent regulation of tumor-related microRNAs in the brain of the annual fish Nothobranchius furzeri. Mech Ageing Dev. 2012;133:226–33.

    Article  CAS  PubMed  Google Scholar 

  31. Baumgart M, Groth M, Priebe S, Savino A, Testa G, Dix A, Ripa R, Spallotta F, Gaetano C, Ori M, Terzibasi Tozzini E, Guthke R, Platzer M, Cellerino A (2014). RNA-seq of the aging brain in the short-lived fish N. furzeri – conserved pathways and novel genes associated with neurogenesis. Aging Cell.

    Google Scholar 

  32. Baumgart M, Priebe S, Groth M, Hartmann N, Menzel U, Pandolfini L, Koch P, Felder M, Ristow M, Englert C, Guthke R, Platzer M, Cellerino A. Longitudinal RNA-Seq analysis of vertebrate aging identifies mitochondrial complex I as a small-molecule-sensitive modifier of lifespan. Cell Systems. 2016;2:122–32.

    Article  CAS  PubMed  Google Scholar 

  33. Valenzano DR, Sharp S, Brunet A. Transposon-mediated Transgenesis in the short-lived African killifish Nothobranchius furzeri, a vertebrate model for aging. G3 (Bethesda). 2011;1:531–8.

    Article  CAS  Google Scholar 

  34. Allard JB, Kamei H, Duan C. Inducible transgenic expression in the short-lived fish Nothobranchius furzeri. J Fish Biol. 2013;82:1733–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ripa R, Dolfi L, Terrigno M, Pandolfini L, Arcucci V, Groth M, Terzibasi Tozzini E, Baumgart M, Cellerino A. MicroRNA miR-29 controls a compensatory response to limit neuronal iron accumulation during adult life and aging. BioRXiv. 2016; https://doi.org/10.1101/046516.

  36. Harel I, Benayoun BA, Machado BE, Priya Singh P, Hu C-K, Pech MF, Valenzano DR, Zhang E, Sharp SC, Artandi SE, Brunet A. A platform for rapid exploration of aging and diseases in a naturally short-lived vertebrate. Cell,. in press. 2015;160:1013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Terzibasi E, Lefrancois C, Domenici P, Hartmann N, Graf M, Cellerino A. Effects of dietary restriction on mortality and age-related phenotypes in the short-lived fish Nothobranchius furzeri. Aging Cell. 2009;8:88–99.

    Article  CAS  PubMed  Google Scholar 

  38. Valenzano DR, Terzibasi E, Cattaneo A, Domenici L, Cellerino A. Temperature affects longevity and age-related locomotor and cognitive decay in the short-lived fish Nothobranchius furzeri. Aging Cell. 2006a;5:275–8.

    Article  CAS  PubMed  Google Scholar 

  39. Tozzini ET, Dorn A, Ng’oma E, Polacik M, Blazek R, Reichwald K, Petzold A, Watters B, Reichard M, Cellerino A. Parallel evolution of senescence in annual fishes in response to extrinsic mortality. BMC Evol Biol. 2013;13:77.

    Article  PubMed  Google Scholar 

  40. Hartmann N, Englert C. A microinjection protocol for the generation of transgenic killifish (species: Nothobranchius furzeri). Dev Dyn. 2012a;241:1133–41.

    Article  CAS  PubMed  Google Scholar 

  41. Hartmann N, Englert C. A microinjection protocol for the generation of transgenic killifish (species: Nothobranchius furzeri). Dev Dyn. 2012b;241(6):1133–41.

    Article  CAS  PubMed  Google Scholar 

  42. Reichwald K, Petzold A, Koch P, Downie BR, Hartmann N, Pietsch S, Baumgart M, Chalopin D, Felder M, Bens M, Sahm A, Szafranski K, Taudien S, Groth M, Arisi I, Weise A, Bhatt SS, Sharma V, Kraus JM, Schmid F, Priebe S, Liehr T, Gorlach M, Than ME, Hiller M, Kestler HA, Volff JN, Schartl M, Cellerino A, Englert C, Platzer M. Insights into sex chromosome evolution and aging from the genome of a short-lived fish. Cell. 2015;163:1527–38.

    Article  CAS  PubMed  Google Scholar 

  43. Sahm A, Platzer M, Cellerino A. Outgroups and positive selection: the Nothobranchius furzeri case. Trends Genet. 2016b;32:523–5.

    Article  CAS  PubMed  Google Scholar 

  44. Sahm A, Bens M, Platzer M, Cellerino A. Convergent evolution of genes controlling mitonuclear balance in short-lived annual fishes. BioRXiv. 2016a; https://doi.org/10.1101/055780.

  45. Soerensen M, Dato S, Tan Q, Thinggaard M, Kleindorp R, Beekman M, Jacobsen R, Suchiman HE, de Craen AJ, Westendorp RG, Schreiber S, Stevnsner T, Bohr VA, Slagboom PE, Nebel A, Vaupel JW, Christensen K, McGue M, Christiansen L. Human longevity and variation in GH/IGF-1/insulin signaling, DNA damage signaling and repair and pro/antioxidant pathway genes: cross sectional and longitudinal studies. Exp Gerontol. 2012;47:379–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Didier N, Hourde C, Amthor H, Marazzi G, Sassoon D. Loss of a single allele for Ku80 leads to progenitor dysfunction and accelerated aging in skeletal muscle. EMBO Mol Med. 2012;4:910–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Manichaikul A, Rich SS, Perry H, Yeboah J, Law M, Davis M, Parker M, Ragosta M, Connelly JJ, McNamara CA, Taylor AM. A functionally significant polymorphism in ID3 is associated with human coronary pathology. PLoS One. 2014;9:e90222.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kirschner J, Weber D, Neuschl C, Franke A, Bottger M, Zielke L, Powalsky E, Groth M, Shagin D, Petzold A, Hartmann N, Englert C, Brockmann GA, Platzer M, Cellerino A, Reichwald K. Mapping of quantitative trait loci controlling lifespan in the short-lived fish Nothobranchius furzeri- a new vertebrate model for age research. Aging Cell. 2012;11:252–61.

    Article  CAS  PubMed  Google Scholar 

  49. Valenzano DR, Benayoun BA, Singh PP, Zhang E, Etter PD, Hu CK, Clement-Ziza M, Willemsen D, Cui R, Harel I, Machado BE, Yee MC, Sharp SC, Bustamante CD, Beyer A, Johnson EA, Brunet A. The African turquoise killifish genome provides insights into evolution and genetic architecture of lifespan. Cell. 2015;163:1539–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Terzibasi Tozzini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tozzini, E.T. (2020). Nothobranchius furzeri as a New Model System for Ageing Studies. In: Rath, P. (eds) Models, Molecules and Mechanisms in Biogerontology. Springer, Singapore. https://doi.org/10.1007/978-981-32-9005-1_15

Download citation

Publish with us

Policies and ethics