Skip to main content

Selective Pesticides in IPM

  • Chapter
  • First Online:
Sustainable Crop Protection under Protected Cultivation

Abstract

For control of pest and diseases, the pesticides still act as first line of defense. The use of pesticides will remain, at least in the short to medium term, an important strategy, allowing the grower to continue to produce economically a quality crop. Guided chemical control aims to reduce pesticide use by determining whether a control for a certain pest is necessary and, if so, when it should be applied (for optimum effect). In guided control, chemical control is only deemed necessary when the economic benefits counterbalance the costs; it implies the use of curative rather than preventive pesticides. It is essential that the use of chemicals in IPM be based on economic threshold and only after considering the impact of the factors regulating the populations of pests and pathogens, making sure that there are no other effective management tools. Importance of selective pesticides in IPM programs, effects of chemical pesticides on beneficial organisms, influence of pesticide application on the selectivity of a pesticide, and pesticide resistance and anti-resistance strategies in IPM are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anonymous (1988) Meeting-report Adhoc panel-meeting on Frankliniella occidentalis – its biology and control. EPPO Panel Information, Paris

    Google Scholar 

  • Baath E (1991) Tolerance of copper by entomogenous fungi and the use of copper-amended media for isolation of entomogenous fungi from soil. Mycol Res 95(9):1140–1142

    Article  Google Scholar 

  • Bartlett BR (1964) Toxicity of some pesticides to eggs, larvae and adults of the green lacewing, Chrysopa carnea. J Econ Entomol 57:366–369

    Article  CAS  Google Scholar 

  • Bathon H (1996) Impact of entomopathogenic nematodes on non-target hosts. Biocontrol Sci Technol 6:421–434

    Article  Google Scholar 

  • Blümel S, Stolz M (1993) Investigations on the effect of insect growth regulators and inhibitors on the predatory mite Phytoseiulus persimilis AH. with particular emphasis on cyromazine. J Plant Dis Prot 100(2):150–154

    Google Scholar 

  • Blümel S, Bakker F, Grove A (1993) Evaluation of different methods to assess the side effects of pesticides on Phytoseiulus persimilis AH. Exp Appl Acarol 17(3):161–169

    Article  Google Scholar 

  • Cahill M, Byrne FJ, Denholm I, Devonshire AL, Gorman KJ (1994) Insecticide resistance in Bemisia tabaci. Pestic Sci 42:135–142

    Article  Google Scholar 

  • Celli S, Bortolotti L, Nanni C, Porrini C, Sbrenna G (1997) Effects of the IGR fenoxycarb on eggs and larvae of Chrysoperla carnea (Neuroptera, Chrysopidae). Laboratory test. In: Haskell PT, McEwen PK (eds) New studies in ecotoxicology. The Welsh Pest Management Forum, Cardiff, pp 45–49

    Google Scholar 

  • Cohen Y, Reuveni M, Samoucha Y (1983) Competition between metalaxyl-resistant and sensitive strains of Pseudoperonospora cubensis on cucumber plants. Phytopathology 73:1516–1520

    Article  CAS  Google Scholar 

  • Croft BA, Strickler K (1983) Natural enemy resistance to pesticides: documentation, characterization, theory and application. In: Georghiou GP, Saito T (eds) Pest resistance to pesticides. Plenum Press, New York, pp 669–702

    Chapter  Google Scholar 

  • Croft BA, van de Baan HE (1988) Ecological and genetic factors influencing evolution of pesticide resistance in Tetranychid and Phytoseiid mites. Exp Appl Acarol 4:277–300

    Article  CAS  Google Scholar 

  • Elad Y, Yunis H, Katan T (1992) Multiple fungicide resistance to benzimidazoles, dicarboximides and diethofencarb in field isolates of Botrytis cinerea in Israel. Plant Pathol 41:41–46

    Article  CAS  Google Scholar 

  • Elzen GW (1989) Sublethal effects of pesticides on beneficial parasitoids. In: Jepson P (ed) Pesticides and non-target invertebrates. Incept, Wimborne Dorset, pp 129–150

    Google Scholar 

  • Fransen JJ, van Lenteren JC (1993) Host selection and survival of the parasitoid Encarsia formosa on greenhouse whitefly Trialeurodes vaporariorum in the presence of hosts infected with the fungus Aschersonia aleyrodis. Entomol Exp Appl 69:239–249

    Article  Google Scholar 

  • Georghiou GP (1983) Management of resistance in arthropods. In: Georghiou GP, Saito T (eds) Pest resistance to pesticides. Plenum Press, New York, pp 769–792

    Chapter  Google Scholar 

  • Georghiou GP, Mellon RB (1983) Pesticide resistance in time and space. In: Georghiou GP, Saito T (eds) Pest resistance to pesticides. Plenum Press, New York, pp 1–47

    Chapter  Google Scholar 

  • Goodwin S, Wellham TM (1992) Comparison of dimethoate and methidathion tolerance in four strains of Phytoseiulus persimilis (Athias-Henriot) (Acarina: Phytoseiidae) in Australia. Exp Appl Acarol 16(3):255–261

    Article  CAS  Google Scholar 

  • Gullino ML, Aloi C, Garibaldi A (1989) Influence of spray schedules on fungicide resistant populations of Botrytis cinerea Pers on grapevine. Neth J Plant Pathol 95(Suppl.1):87–94

    Google Scholar 

  • Hassall KA (1982) The chemistry of pesticides. Verlag Chemie, Weinheim

    Google Scholar 

  • Hassan SA, Bigler F, Bogenschütz H, Boller E, Brun J, Calis JNM, Chiverton P, Coremans-Pelseneer J, Duso C, Grove A, Helyer N, Heimbach U, Hokkanen GB, Lewis H, Mansour F, Moreth L, Polgar L, Samsoe-Petersen L, Sauphanor B, Stäubli A, Sterk G, van de Veire M, Viggiani G, Vogt H (1994) Results of the sixth joint pesticide testing programme carried out by the IOBC working group “Pesticides and Beneficial Organisms”. Entomophaga 39:107–119

    Article  Google Scholar 

  • Heitefub R (1975) Pflanzcnschutz. Georg Thieme Verlag, Stuttgart

    Google Scholar 

  • Hodek I (1973) Biology of Coccinellidae. Dr W Junk, The Hague [cited in Horn DJ, Wadleigh RW (1993) Resistance of aphid natural enemies to insecticides. In: Minks AK, Hanewijn P (eds) World crop pests: aphids, their biology, natural enemies and control, vol 2B. Elsevier, Amsterdam, pp 337–347]

    Google Scholar 

  • Horowitz AR, Forer G, Ishaaya I (1994) Managing resistance in Bemisia tabaci in Israel with emphasis on cotton. Pestic Sci 42:113–122

    Article  CAS  Google Scholar 

  • Huffaker CB (1990) Effects of environmental factors on natural enemies of armoured scale insects. In: Rosen D (ed) World crop pests: armoured scale insects, their biology, natural enemies and control, vol 4B. Elseviers, Amsterdam, pp 205–220

    Google Scholar 

  • Hull LA, Beers EH (1985) Ecological selectivity: modifying chemical control practices to preserve natural enemies. In: Hoy MA, Herzog DC (eds) Biological control in agricultural IPM systems. Academic, Orlando, pp 103–121

    Chapter  Google Scholar 

  • Jones WA, Wolfenbarger DA, Kirk AA (1995) Response of adult parasitoids of Bemisia tabaci (Hom: Aleyrodidae) to leaf residues of selected cotton insecticides. Entomophaga 40(2):153–162

    Article  CAS  Google Scholar 

  • Lingappa SS, Starks KJ, Eikenbary RD (1972) Insecticidal effect on Lysiphlebus testaceipes, a parasite of greenbug at all three developmental stages. Environ Entomol 1:520–521

    Article  CAS  Google Scholar 

  • Maise S, Candolfi MP, Neumann C, Vickus P, Mader P (1997) A species comparative study: sensitivity of Aphidius rhopalosiphi, A. matricariae and A. colemani (Hymenoptera: Aphidiidae) to Dimethoate 40EC under worst case laboratory conditions. In: Haskell PT, McEwen PK (eds) New studies in ecotoxicology. The Welsh Pest Management Forum, Cardiff, pp 45–49

    Google Scholar 

  • Matthews GA (1992) Pesticide application methods, 2nd edn. Longman, London

    Google Scholar 

  • McCoy CW, Samson RA, Boucias DC (1988) Entomogenous fungi. In: CM Ignoffo (ed) CRC handbook of natural pesticides, vol V, Microbial insecticides, Part A. CRC Press, Boca Raton, pp 151–237

    Google Scholar 

  • Oatman ER, Kennedy GG (1976) Methomyl induced outbreak of Liriomyza sativae on tomato. J Econ Entomol 69(5):667–668

    Article  CAS  Google Scholar 

  • Pavlyushin VA (1996) Effect of entomopathogenic fungi on entomophagous arthropods. IOBC/WPRS Bull 19(9):247–249

    Google Scholar 

  • Poehling HM (1989) Selective application strategies for insecticides in agricultural crops. In: Jepson PC (ed) Pesticides and non-target invertebrates. Incept, Wimborne Dorset, pp 151–176

    Google Scholar 

  • Rathman RJ, Johnson MW, Rosenheim JA, Tabashnik BE, Purcell M (1992) Sexual differences in insecticide susceptibility and synergism with piperonyl butoxide in the leaf miner parasitoid Diglyphus begini (Hymenoptera: Eulophidae). J Econ Entomol 85(1):15–20

    Article  CAS  Google Scholar 

  • Reddy KB, Bhat PK (1993) Effect of endosulfan on the mealybug parasitoid Leptomastix dactylopii How. J Coffee Res 23(1):19–23

    Google Scholar 

  • Rovesti L, Heinzpeter EW, Tagliente F, Deseo KV (1988) Compatibility of pesticides with the entomopathogenic nematode Heterorhabditis bacteriophora Poinar (Nematoda: Heterorhabditidae). Nematologica 34:462–476

    Article  CAS  Google Scholar 

  • Schuler T (1991) Verticillium lecanii (Zimmermann) Viegas (Hyphomycetales: Moniliaceae): Geschichte, Systematik, Verbreitung. In: Schuler T, Hommes M, Plate HP, Zimmermann G (eds) Biologie und Anwendung im Pflanzenschutz, Mitteilungen aus der Biologischen Bundesanstalt für Land- und Forstwirtschaft Berlin-Dahlem 269:118–125

    Google Scholar 

  • Schuster DJ, Musgrave CA, Jones JP (1979) Vegetable leaf miner and parasite emergence from tomato foliage sprayed with oxamyl. J Econ Entomol 72:208–210

    Article  CAS  Google Scholar 

  • Scopes NEA, Biggerstaff SM (1974) Progress towards integrated pest control on year round chrysanthemums. In: Proceedings of the 7th British insecticide and fungicide conference, Brighton, 19–22 Nov 1973, BCPC, London, pp 227–234

    Google Scholar 

  • Shtienberg D, Elad Y (1997) Incorporation of weather forecasting in integrated, biological-chemical management of Botrytis cinerea. Phytopathology 87:332–340

    Article  PubMed  CAS  Google Scholar 

  • Sterk G, Bolckmans K, van de Veire M, Sels B, Stepman W (1995) Side-effects of the microbial insecticide PreFeRal (Paecilomyces fumosoroseus, strain Apopka 97) on different species of beneficial arthropods. Mededelingen van de Faculteit Landbouwkundige en Toegepaste Biologische Wetenschappen, Universiteit Gent 60(3a):719–724

    Google Scholar 

  • Theiling KM, Croft BA (1988) Pesticide side-effects on arthropod natural enemies: a data-base summary. Agric Ecosyst Environ 21:191–218

    Article  CAS  Google Scholar 

  • van de Veire M (1995) Integrated pest management in glasshouse tomatoes, sweet peppers and cucumbers in Belgium. PhD thesis, University of Gent

    Google Scholar 

  • Vogt H (1992) Investigations on the side effects of insecticides and acaricides on Chrysoperla carnea Stph (Neuroptera, Chrysopidae). Mededelingen van de Faculteit Landbouwwetenschappen, Rijksuniversiteit Gent 57(2b):559–567

    CAS  Google Scholar 

  • Warner LA, Croft BA (1982) Toxicity of azinphosmethyl and selected orchard aphid predator, Aphidoletes aphidomyza. J Econ Entomol 75(3):410–415

    Article  CAS  Google Scholar 

  • Wilding N (1972) The effect of systemic fungicides on the aphid pathogen Cephalosporium aphidicola. Plant Pathol 21:137–139

    Article  CAS  Google Scholar 

  • Yunis H, Elad Y (1989) Survival of dicarboximide-resistant strains of Botrytis cinerea in plant debris during summer in Israel. Phytoparasitica 17:13–21

    Article  Google Scholar 

  • Zchori-Fein E, Roush RT, Sanderson JP (1994) Potential for integration of biological and chemical control of greenhouse whitefly using Encarsia formosa and abamectin. Environ Entomol 23(5):1277–1282

    Article  Google Scholar 

  • Zeleny J, Vostrel J, Ruzicka Z, Kalushkov PK (1988) Impact of various pesticides on aphidophagous Coccinellidae. In: Niemczyk E, Dixon AFG (eds) Ecology and effectiveness of Aphidophaga. SPB Academic Publishing, The Hague, pp 327–332

    Google Scholar 

  • Zhang ZQ, Sanderson JP (1990) Relative toxicity of abamectin to the predatory mite Phytoseiulus persimilis (Acari: Phytoseiidae) and two spotted spider mite (Acari: Tetranychidae). J Econ Entomol 83(5):1783–1790

    Article  CAS  Google Scholar 

  • Zimmerman RJ, Cranshaw WS (1990) Compatibility of three entomogenous nematodes (Rhabditia) in aqueous solutions of pesticides used in turf grass maintenance. J Econ Entomol 83(1):97–100

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Reddy, P.P. (2016). Selective Pesticides in IPM. In: Sustainable Crop Protection under Protected Cultivation. Springer, Singapore. https://doi.org/10.1007/978-981-287-952-3_10

Download citation

Publish with us

Policies and ethics