Skip to main content
  • 2816 Accesses

Abstract

The cornea is a transparent structure at the front of the eye.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kiely P, Smith G, Carney L. The mean shape of the human cornea. Opt Acta. 1982;29:1027–40.

    Article  Google Scholar 

  2. Read S, Collins M, Carney LG, Franklin R. The topography of the central and peripheral cornea. Invest Ophthalmol Vis Sci. 2006;47:1404–15.

    Article  PubMed  Google Scholar 

  3. Khoramnia R, Rabsilber TM, Auffarth GU, et al. Central and peripheral pachymetry measurements according to age using the Pentacam rotating Scheimpflug camera. J Cataract Refract Surg. 2007;33:830–6.

    Article  PubMed  Google Scholar 

  4. DelMonte DW, Kim T. Anatomy and physiology of the cornea. J Cataract Refract Surg. 2011;37:588–98.

    Article  PubMed  Google Scholar 

  5. Van den Berg TJ, Tan KE. Light transmittance of the human cornea from 320 to 700 nm for different ages. Vision Res. 1994;34:1453–6.

    Article  PubMed  Google Scholar 

  6. Elkington AR, Frank HJ, Greaney MJ. Clinical optics. Oxford: Blackwell Science Ltd; 1999.

    Google Scholar 

  7. Snell RS, Lemp MA. Clinical anatomy of the eye. Oxford: Blackwell Science Inc; 1998.

    Google Scholar 

  8. Hassell JR, Birk DE. The molecular basis of corneal transparency. Exp Eye Res. 2010;91:326–35.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Qazi Y, Wong G, Monson B, Stringham J, Ambati BK. Corneal transparency: genesis, maintenance and dysfunction. Brain Res Bull. 2010;81:198–210.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Ehlers N, Heegaard S, Hjortdal J, Ivarsen A, Nielsen K, Prause JU. Morphological evaluation of normal human corneal epithelium. Acta Ophthalmol. 2010;88:858–61.

    Article  PubMed  Google Scholar 

  11. Hanna C, O’Brien JE. Cell production and migration in the epithelial layer of the cornea. Arch Ophthalmol. 1960;64:536–9.

    Article  CAS  PubMed  Google Scholar 

  12. Watanabe H, Fabricant M, Tisdale AS, Spurr-Michaud SJ, Lindberg K, Gipson IK. Human corneal and conjunctival epithelia produce a mucin-like glycoprotein for the apical surface. Invest Ophthalmol Vis Sci. 1995;36:337–44.

    CAS  PubMed  Google Scholar 

  13. Doughty MJ. On the evaluation of the corneal epithelial surface by scanning electron microscopy. Optom Vis Sci Off Publ Am Acad Optom. 1990;67:735–56.

    Article  CAS  Google Scholar 

  14. Masters BR, Thaer AA. In vivo human corneal confocal microscopy of identical fields of subepithelial nerve plexus, basal epithelial, and wing cells at different times. Microsc Res Tech. 1994;29:350–6.

    Article  CAS  PubMed  Google Scholar 

  15. Alvarado J, Murphy C, Juster R. Age-related changes in the basement membrane of the human corneal epithelium. Invest Ophthalmol Vis Sci. 1983;24:1015–28.

    CAS  PubMed  Google Scholar 

  16. McLaughlin BJ, Caldwell RB, Sasaki Y, Wood TO. Freeze-fracture quantitative comparison of rabbit corneal epithelial and endothelial membranes. Curr Eye Res. 1985;4:951–61.

    Article  CAS  PubMed  Google Scholar 

  17. Ban Y, Dota A, Cooper LJ, et al. Tight junction-related protein expression and distribution in human corneal epithelium. Exp Eye Res. 2003;76:663–9.

    Article  CAS  PubMed  Google Scholar 

  18. Williams K, Watsky M. Gap junctional communication in the human corneal endothelium and epithelium. Curr Eye Res. 2002;25:29–36.

    Article  PubMed  Google Scholar 

  19. Gipson IK. Adhesive mechanisms of the corneal epithelium. Acta Ophthalmol Suppl. 1992;202:13–7.

    Google Scholar 

  20. Giepmans BN, van Ijzendoorn SC. Epithelial cell-cell junctions and plasma membrane domains. Biochim Biophys Acta. 2009;1788:820–31.

    Article  CAS  PubMed  Google Scholar 

  21. Thoft RA, Friend J. The X, Y, Z hypothesis of corneal epithelial maintenance. Invest Ophthalmol Vis Sci. 1983;24:1442–3.

    CAS  PubMed  Google Scholar 

  22. Yu FS, Yin J, Xu K, Huang J. Growth factors and corneal epithelial wound healing. Brain Res Bull. 2010;81:229–35.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Ubels JL, Van Dyken RE, Louters JR, Schotanus MP, Haarsma LD. Potassium ion fluxes in corneal epithelial cells exposed to UVB. Exp Eye Res. 2011;92:425–31.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Candia OA, Cook P. Na+-K+ pump stoichiometry and basolateral membrane permeability of frog corneal epithelium. Am J Physiol. 1986;250:F850–9.

    CAS  PubMed  Google Scholar 

  25. Hamann S. Molecular mechanisms of water transport in the eye. Int Rev Cytol. 2002;215:395–431.

    Article  CAS  PubMed  Google Scholar 

  26. Al-Nakkash L, Reinach PS. Activation of a CFTR-mediated chloride current in a rabbit corneal epithelial cell line. Invest Ophthalmol Vis Sci. 2001;42:2364–70.

    CAS  PubMed  Google Scholar 

  27. Schmoll T, Unterhuber A, Kolbitsch C, Le T, Stingl A, Leitgeb R. Precise thickness measurements of Bowman’s layer, epithelium, and tear film. Optom Vis Sci Off Publ Am Acad Optom. 2012;89:E795–802.

    Article  Google Scholar 

  28. Tao A, Wang J, Chen Q, et al. Topographic thickness of Bowman’s layer determined by ultra-high resolution spectral domain-optical coherence tomography. Invest Ophthalmol Vis Sci. 2011;52:3901–7.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Kobayashi A, Yokogawa H, Sugiyama K. In vivo laser confocal microscopy of Bowman’s layer of the cornea. Ophthalmology. 2006;113:2203–8.

    Article  PubMed  Google Scholar 

  30. Patel S, Reinstein DZ, Silverman RH, Coleman DJ. The shape of Bowman’s layer in the human cornea. J Refract Surg. 1998;14:636–40.

    CAS  PubMed  Google Scholar 

  31. Wilson SE, Hong JW. Bowman’s layer structure and function: critical or dispensable to corneal function? A hypothesis. Cornea. 2000;19:417–20.

    Article  CAS  PubMed  Google Scholar 

  32. Meek KM, Boote C. The organization of collagen in the corneal stroma. Exp Eye Res. 2004;78:503–12.

    Article  CAS  PubMed  Google Scholar 

  33. Ojeda JL, Ventosa JA, Piedra S. The three-dimensional microanatomy of the rabbit and human cornea. A chemical and mechanical microdissection-SEM approach. J Anat. 2001;199:567–76.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Newton RH, Meek KM. Circumcorneal annulus of collagen fibrils in the human limbus. Invest Ophthalmol Vis Sci. 1998;39:1125–34.

    CAS  PubMed  Google Scholar 

  35. Ihanamaki T, Pelliniemi LJ, Vuorio E, et al. Collagens and collagen-related matrix components in the human and mouse eye. Prog Retin Eye Res. 2004;23:403–34.

    Article  CAS  PubMed  Google Scholar 

  36. Meek KM, Fullwood NJ. Corneal and scleral collagens–a microscopist’s perspective. Micron. 2001;32:261–72.

    Article  CAS  PubMed  Google Scholar 

  37. Knupp C, Pinali C, Lewis PN, et al. The architecture of the cornea and structural basis of its transparency. Adv Protein Chem Struct Biol. 2009;78:25–49.

    Article  CAS  PubMed  Google Scholar 

  38. Maurice DM. The structure and transparency of the cornea. J Physiol. 1957;136:263–86.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Scott JE. Proteoglycan: collagen interactions and corneal ultrastructure. Biochem Soc Trans. 1991;19:877–81.

    Article  CAS  PubMed  Google Scholar 

  40. Quantock AJ, Young RD. Development of the corneal stroma, and the collagen-proteoglycan associations that help define its structure and function. Dev Dyn. 2008;237:2607–21.

    Article  PubMed  Google Scholar 

  41. Moller-Pedersen T, Ledet T, Ehlers N. The keratocyte density of human donor corneas. Curr Eye Res. 1994;13:163–9.

    Article  CAS  PubMed  Google Scholar 

  42. Watsky MA. Keratocyte gap junctional communication in normal and wounded rabbit corneas and human corneas. Invest Ophthalmol Vis Sci. 1995;36:2568–76.

    CAS  PubMed  Google Scholar 

  43. Fini ME. Keratocyte and fibroblast phenotypes in the repairing cornea. Prog Retin Eye Res. 1999;18:529–51.

    Article  CAS  PubMed  Google Scholar 

  44. Bryant MR, McDonnell PJ. A triphasic analysis of corneal swelling and hydration control. J Biomech Eng. 1998;120:370–81.

    Article  CAS  PubMed  Google Scholar 

  45. Dua HS, Faraj LA, Said DG, Gray T, Lowe J. Human corneal anatomy redefined: a novel pre-Descemet’s layer (Dua’s layer). Ophthalmology. 2013;120:1778–85.

    Article  PubMed  Google Scholar 

  46. Grant DS, Leblond CP. Immunogold quantitation of laminin, type IV collagen, and heparan sulfate proteoglycan in a variety of basement membranes. J Histochem Cytochem Off J Histochem Soc. 1988;36:271–83.

    Article  CAS  Google Scholar 

  47. Danielsen CC. Tensile mechanical and creep properties of Descemet’s membrane and lens capsule. Exp Eye Res. 2004;79:343–50.

    Article  CAS  PubMed  Google Scholar 

  48. Twining SS, Davis SD, Hyndiuk RA. Relationship between proteases and descemetocele formation in experimental Pseudomonas keratitis. Curr Eye Res. 1986;5:503–10.

    Article  CAS  PubMed  Google Scholar 

  49. Watsky MA, McCartney MD, McLaughlin BJ, Edelhauser HF. Corneal endothelial junctions and the effect of ouabain. Invest Ophthalmol Vis Sci. 1990;31:933–41.

    CAS  PubMed  Google Scholar 

  50. Srinivas SP. Dynamic regulation of barrier integrity of the corneal endothelium. Optom Vis Sci. 2010;87:E239–54.

    PubMed Central  PubMed  Google Scholar 

  51. Geroski DH, Matsuda M, Yee RW, Edelhauser HF. Pump function of the human corneal endothelium. Effects of age and cornea guttata. Ophthalmology. 1985;92:759–63.

    Article  CAS  PubMed  Google Scholar 

  52. Rimmer SJ. Demonstration of a Na(+)/H(+) exchanger NHE1 in fresh bovine corneal endothelial cell basolateral plasma membrane. Biochim Biophys Acta. 1999;1419:283–8.

    Article  CAS  PubMed  Google Scholar 

  53. Sun XC, Bonanno JA. Identification and cloning of the Na/HCO(3-) cotransporter (NBC) in human corneal endothelium. Exp Eye Res. 2003;77:287–95.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Hodson S, Miller F. The bicarbonate ion pump in the endothelium which regulates the hydration of rabbit cornea. J Physiol. 1976;263:563–77.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Green K, Simon S, Kelly Jr GM, Bowman KA. Effects of [Na+], [Cl-], carbonic anhydrase, and intracellular pH on corneal endothelial bicarbonate transport. Invest Ophthalmol Vis Sci. 1981;21:586–91.

    CAS  PubMed  Google Scholar 

  56. McGowan SL, Edelhauser HF, Pfister RR, et al. Stem cell markers in the human posterior limbus and corneal endothelium of unwounded and wounded corneas. Mol Vis. 2007;13:1984–2000.

    CAS  PubMed  Google Scholar 

  57. Joyce NC. Cell cycle status in human corneal endothelium. Exp Eye Res. 2005;81:629–38.

    Article  CAS  PubMed  Google Scholar 

  58. Yee RW, Matsuda M, Schultz RO, Edelhauser HF. Changes in the normal corneal endothelial cellular pattern as a function of age. Curr Eye Res. 1985;4:671–8.

    Article  CAS  PubMed  Google Scholar 

  59. Dawson DG, Ubels JL, Edelhauser HF. Cornea and sclera. In: Levin LA, Nilsson SFE, Ver Hoeve J, Wu SM, editors. Adlers physiology of the eye. 11th ed. New York: Saunders/Elsevier; 2011.

    Google Scholar 

  60. Hayashi K, Yoshida M, Manabe S, Hirata A. Cataract surgery in eyes with low corneal endothelial cell density. J Cataract Refract Surg. 2011;37:1419–25.

    Article  PubMed  Google Scholar 

  61. Rao SK, Leung AT, Young AL, Fan DS, Lam DS. Is there a minimum endothelial cell count for a clear cornea after penetrating keratoplasty? Indian J Ophthalmol. 2000;48:71–2.

    CAS  PubMed  Google Scholar 

  62. Schroeter J, Rieck P. Endothelial evaluation in the cornea bank. Dev Ophthalmol. 2009;43:47–62.

    Article  PubMed  Google Scholar 

  63. Schimmelpfennig B. Nerve structures in human central corneal epithelium. Graefes Arch Clin Exp Ophthalmol. 1982;218:14–20.

    Article  CAS  PubMed  Google Scholar 

  64. Guthoff RF, Wienss H, Hahnel C, et al. Epithelial innervation of human cornea: a three-dimensional study using confocal laser scanning fluorescence microscopy. Cornea. 2005;24:608–13.

    Article  PubMed  Google Scholar 

  65. Klenkler B, Sheardown H, Jones L, et al. Growth factors in the tear film: role in tissue maintenance, wound healing, and ocular pathology. Ocul Surf. 2007;5:228–39.

    Article  PubMed  Google Scholar 

  66. Micera A, Lambiase A, Puxeddu I, et al. Nerve growth factor effect on human primary fibroblastic-keratocytes: possible mechanism during corneal healing. Exp Eye Res. 2006;83:747–57.

    Article  CAS  PubMed  Google Scholar 

  67. Muller LJ, Marfurt CF, Kruse F, et al. Corneal nerves: structure, contents and function. Exp Eye Res. 2003;76:521–42.

    Article  CAS  PubMed  Google Scholar 

  68. Lawrenson JG. Corneal sensitivity in health and disease. Ophthalmic Physiol Opt. 1997;17 Suppl 1:S17–22.

    Article  PubMed  Google Scholar 

  69. Kohlhaas M. Corneal sensation after cataract and refractive surgery. J Cataract Refract Surg. 1998;24:1399–409.

    Article  CAS  PubMed  Google Scholar 

  70. Belmonte C, Acosta MC, Gallar J. Neural basis of sensation in intact and injured corneas. Exp Eye Res. 2004;78:513–25.

    Article  CAS  PubMed  Google Scholar 

  71. Ghoghawala SY, Mannis MJ, Pullar CE, Rosenblatt MI, Isseroff RR. Beta2-adrenergic receptor signaling mediates corneal epithelial wound repair. Invest Ophthalmol Vis Sci. 2008;49:1857–63.

    Article  PubMed Central  PubMed  Google Scholar 

  72. Chu TC, Candia OA. Role of alpha 1- and alpha 2-adrenergic receptors in Cl- transport across frog corneal epithelium. Am J Physiol. 1988;255:C724–30.

    CAS  PubMed  Google Scholar 

  73. Zieske JD, Guimaraes SR, Hutcheon AE. Kinetics of keratocyte proliferation in response to epithelial debridement. Exp Eye Res. 2001;72:33–9.

    Article  CAS  PubMed  Google Scholar 

  74. Maltseva I, Chan M, Kalus I, Dierks T, Rosen SD. The SULFs, extracellular sulfatases for heparan sulfate, promote the migration of corneal epithelial cells during wound repair. PLoS One. 2013;8:e69642.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Lim M, Goldstein M, Tuli S, Schultz G. Growth factor, cytokine, and protease interactions during corneal wound healing. Ocul Surf. 2003;1:53–65.

    Article  PubMed  Google Scholar 

  76. Imanishi J, Kamiyama K, Iguchi I, Kita M, Sotozono C, Kinoshita S. Growth factors: importance in wound healing and maintenance of transparency of the cornea. Prog Retin Eye Res. 2000;19:113–29.

    Article  CAS  PubMed  Google Scholar 

  77. Schilling-Schon A, Pleyer U, Hartmann C, Rieck PW. The role of endogenous growth factors to support corneal endothelial migration after wounding in vitro. Exp Eye Res. 2000;71:583–9.

    Article  CAS  PubMed  Google Scholar 

  78. Bourne WM, Nelson LR, Buller CR, Huang PT, Geroski DH, Edelhauser HF. Long-term observation of morphologic and functional features of cat corneal endothelium after wounding. Invest Ophthalmol Vis Sci. 1994;35:891–9.

    CAS  PubMed  Google Scholar 

  79. Belmonte C. Eye dryness sensations after refractive surgery: impaired tear secretion or “phantom” cornea? J Refract Surg. 2007;23:598–602.

    PubMed  Google Scholar 

  80. Kotecha A. What biomechanical properties of the cornea are relevant for the clinician? Surv Ophthalmol. 2007;52:S109–14.

    Article  PubMed  Google Scholar 

  81. Meek KM, Newton RH. Organization of collagen fibrils in the corneal stroma in relation to mechanical properties and surgical practice. J Refract Surg. 1999;15:695–9.

    CAS  PubMed  Google Scholar 

  82. Jue B, Maurice DM. The mechanical properties of the rabbit and human cornea. J Biomech. 1986;19:847–53.

    Article  CAS  PubMed  Google Scholar 

  83. Prausnitz MR, Noonan JS. Permeability of cornea, sclera, and conjunctiva: a literature analysis for drug delivery to the eye. J Pharm Sci. 1998;87:1479–88.

    Article  CAS  PubMed  Google Scholar 

  84. Urtti A. Challenges and obstacles of ocular pharmacokinetics and drug delivery. Adv Drug Deliv Rev. 2006;58:1131–5.

    Article  CAS  PubMed  Google Scholar 

  85. Salazar-Bookaman MM, Wainer I, Patil PN. Relevance of drug-melanin interactions to ocular pharmacology and toxicology. J Ocul Pharmacol. 1994;10:217–39.

    Article  CAS  PubMed  Google Scholar 

  86. Ghate D, Edelhauser HF. Ocular drug delivery. Expert Opin Drug Deliv. 2006;3:275–87.

    Article  CAS  PubMed  Google Scholar 

  87. Gaudana R, Ananthula HK, Parenky A, Mitra AK. Ocular drug delivery. AAPS J. 2010;12:348–60.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Watson PG, Young RD. Scleral structure, organisation and disease. A review. Exp Eye Res. 2004;78:609–23.

    Article  CAS  PubMed  Google Scholar 

  89. Jones LA, Mitchell GL, Mutti DO, et al. Comparison of ocular component growth curves among refractive error groups in children. Invest Ophthalmol Vis Sci. 2005;46:2317–27.

    Article  PubMed  Google Scholar 

  90. McBrien NA, Gentle A. Role of the sclera in the development and pathological complications of myopia. Prog Retin Eye Res. 2003;22:307–38.

    Article  CAS  PubMed  Google Scholar 

  91. Schultz D, Lotz J, Lee S, et al. Structural factors that mediate scleral stiffness. Invest Ophthalmol Vis Sci. 2008;49:4232–6.

    Article  PubMed  Google Scholar 

  92. Ambati J, Canakis CS, Miller JW, Gragoudas ES, Edwards A, Weissgold DJ, Kim I, Delori FC, Adamis AP. Diffusion of high molecular weight compounds through sclera. Invest Ophthalmol Vis Sci. 2000;41:1181–5.

    CAS  PubMed  Google Scholar 

  93. Laibson PR. Recurrent corneal erosions and epithelial basement membrane dystrophy. Eye Contact Lens. 2010;36:315–7.

    Article  PubMed  Google Scholar 

  94. Elhalis H, Azizi B, Jurkunas UV. Fuchs endothelial corneal dystrophy. Ocul Surf. 2010;8:173–84.

    Article  PubMed Central  PubMed  Google Scholar 

  95. Cho SW, Kim JM, Choi CY, Park KH. Changes in corneal endothelial cell density in patients with normal-tension glaucoma. Jpn J Ophthalmol. 2009;53:569–73.

    Article  PubMed  Google Scholar 

  96. Rosado-Adames N, Afshari NA. The changing fate of the corneal endothelium in cataract surgery. Curr Opin Ophthalmol. 2012;23:3–6.

    Article  PubMed  Google Scholar 

  97. Liesegang TJ, Liesegang TJ. Physiologic changes of the cornea with contact lens wear. CLAO J. 2002;28:12–27.

    PubMed  Google Scholar 

  98. Schultz RO, Matsuda M, Yee RW, Edelhauser HF, Schultz KJ. Corneal endothelial changes in type I and type II diabetes mellitus. Am J Ophthalmol. 1984;98:401–10.

    Article  CAS  PubMed  Google Scholar 

  99. Cousen P, Cackett P, Bennett H, Swa K, Dhillon B. Tear production and corneal sensitivity in diabetes. J Diabetes Complications. 2007;21:371–3.

    Article  PubMed  Google Scholar 

  100. Mian SI, Li AY, Dutta S, Musch DC, Shtein RM. Dry eyes and corneal sensation after laser in situ keratomileusis with femtosecond laser flap creation Effect of hinge position, hinge angle, and flap thickness. J Cataract Refract Surg. 2009;35:2092–8.

    Article  PubMed  Google Scholar 

  101. Mahelková G, Filous A, Odehnal M, Cendelín J. Corneal changes assessed using confocal microscopy in patients with unilateral buphthalmos. Invest Ophthalmol Vis Sci. 2013;54:4048–53.

    Article  PubMed  Google Scholar 

  102. Smith EL, Hung LF, Harwerth RS. Developmental visual system anomalies and the limits of emmetropization. Ophthalmic Physiol Opt. 1999;19:90–102.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Skalicky, S.E. (2016). The Cornea and Sclera. In: Ocular and Visual Physiology. Springer, Singapore. https://doi.org/10.1007/978-981-287-846-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-287-846-5_3

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-287-845-8

  • Online ISBN: 978-981-287-846-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics