Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 695 Accesses

Abstract

An array of recent astrophysical observations show us two unresolved mysteries of cosmology; the accelerating expansion of the universe and the existence of dark matter. In order to realize the cosmic acceleration in General relativity, an exotic form of energy, now called dark energy, should be dominated in the present universe. Another unknown content of the universe is dark matter. Dark matter dominates the dynamics of the universe and plays an important role of formation of rich structure of the universe. Here, we summarize some evidences of the accelerating expansion of the universe and the existence of dark matter. we then introduce the gravitational lensing as a tool to reveal mysterious dark components in the universe.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    At small scale (less than galactic scales), the validity of \(\varLambda \)CDM model is controversial (see, e.g., [33] for review).

  2. 2.

    http://www.naoj.org/Projects/HSC/j_index.html.

  3. 3.

    http://www.darkenergysurvey.org/.

  4. 4.

    http://www.lsst.org/lsst/.

References

  1. A. Einstein, Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie, Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften (Berlin). Seite 142–152, 142–152 (1917)

    Google Scholar 

  2. E. Hubble, A relation between distance and radial velocity among extra-galactic nebulae. Proc. Natl. Acad. Sci. 15, 168–173 (1929)

    Google Scholar 

  3. C.T. Kowal, Absolute magnitudes of supernovae. Astron. J. 73, 1021–1024 (1968)

    Google Scholar 

  4. M. Hamuy, M.M. Phillips, N.B. Suntzeff, R.A. Schommer, J. Maza, R. Aviles, The absolute luminosities of the Calan/Tololo type IA supernovae. Astron. J. 112, 2391 (1996). astro-ph/9609059

    Google Scholar 

  5. A.G. Riess, W.H. Press, R.P. Kirshner, A precise distance indicator: type IA supernova multicolor light-curve shapes. Astrophys. J. 473, 88 (1996). astro-ph/9604143

    Google Scholar 

  6. M.M. Phillips, The absolute magnitudes of type IA supernovae. Astrophys. J. Lett. 413, L105–L108 (1993)

    Google Scholar 

  7. B.P. Schmidt, N.B. Suntzeff, M.M. Phillips, R.A. Schommer, A. Clocchiatti, R.P. Kirshner, P. Garnavich, P. Challis, B. Leibundgut, J. Spyromilio, A.G. Riess, A.V. Filippenko, M. Hamuy, R.C. Smith, C. Hogan, C. Stubbs, A. Diercks, D. Reiss, R. Gilliland, J. Tonry, J. Maza, A. Dressler, J. Walsh, R. Ciardullo, The high-Z supernova search: measuring cosmic deceleration and global curvature of the universe using type IA supernovae. Astrophys. J. 507, 46–63 (1998). astro-ph/9805200

    Google Scholar 

  8. S. Perlmutter, S. Gabi, G. Goldhaber, A. Goobar, D.E. Groom, I.M. Hook, A.G. Kim, M.Y. Kim, J.C. Lee, R. Pain, C.R. Pennypacker, I.A. Small, R.S. Ellis, R.G. McMahon, B.J. Boyle, P.S. Bunclark, D. Carter, M.J. Irwin, K. Glazebrook, H.J.M. Newberg, A.V. Filippenko, T. Matheson, M. Dopita, W.J. Couch, Measurements of the cosmological parameters omega and lambda from the first seven supernovae at z >= 0.35. Astrophys. J. 483, 565–581 (1997). astro-ph/9608192

  9. A.G. Riess, A.V. Filippenko, P. Challis, A. Clocchiatti, A. Diercks, P.M. Garnavich, R.L. Gilliland, C.J. Hogan, S. Jha, R.P. Kirshner, B. Leibundgut, M.M. Phillips, D. Reiss, B.P. Schmidt, R.A. Schommer, R.C. Smith, J. Spyromilio, C. Stubbs, N.B. Suntzeff, J. Tonry, Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009–1038 (1998). astro-ph/9805201

    Google Scholar 

  10. S. Perlmutter, G. Aldering, G. Goldhaber, R.A. Knop, P. Nugent, P.G. Castro, S. Deustua, S. Fabbro, A. Goobar, D.E. Groom, I.M. Hook, A.G. Kim, M.Y. Kim, J.C. Lee, N.J. Nunes, R. Pain, C.R. Pennypacker, R. Quimby, C. Lidman, R.S. Ellis, M. Irwin, R.G. McMahon, P. Ruiz-Lapuente, N. Walton, B. Schaefer, B.J. Boyle, A.V. Filippenko, T. Matheson, A.S. Fruchter, N. Panagia, H.J.M. Newberg, W.J. Couch, T.S.C. Project, Measurements of \(\varOmega \) from 42 high-redshift supernovae. Astrophys. J. 517, 565–586 (1999). astro-ph/9812133

  11. R.A. Alpher, H. Bethe, G. Gamow, The origin of chemical elements. Phys. Rev. 73, 803–804 (1948)

    Google Scholar 

  12. R.A. Alpher, R.C. Herman, Remarks on the evolution of the expanding universe. Phys. Rev. 75, 1089–1095 (1949)

    Google Scholar 

  13. W. Hu, N. Sugiyama, J. Silk, The physics of microwave background anisotropies. Nature 386, 37–43 (1997). astro-ph/9504057

    Google Scholar 

  14. G. Hinshaw, D.N. Spergel, L. Verde, R.S. Hill, S.S. Meyer, C. Barnes, C.L. Bennett, M. Halpern, N. Jarosik, A. Kogut, E. Komatsu, M. Limon, L. Page, G.S. Tucker, J.L. Weiland, E. Wollack, E.L. Wright, First-year wilkinson microwave anisotropy probe (WMAP) observations: the angular power spectrum. Astron. Astrophys. Suppl. 148, 135–159 (2003). astro-ph/0302217

    Google Scholar 

  15. D.J. Eisenstein, I. Zehavi, D.W. Hogg, R. Scoccimarro, M.R. Blanton, R.C. Nichol, R. Scranton, H.-J. Seo, M. Tegmark, Z. Zheng, S.F. Anderson, J. Annis, N. Bahcall, J. Brinkmann, S. Burles, F.J. Castander, A. Connolly, I. Csabai, M. Doi, M. Fukugita, J.A. Frieman, K. Glazebrook, J.E. Gunn, J.S. Hendry, G. Hennessy, Z. Ivezić, S. Kent, G.R. Knapp, H. Lin, Y.-S. Loh, R.H. Lupton, B. Margon, T.A. McKay, A. Meiksin, J.A. Munn, A. Pope, M.W. Richmond, D. Schlegel, D.P. Schneider, K. Shimasaku, C. Stoughton, M.A. Strauss, M. SubbaRao, A.S. Szalay, I. Szapudi, D.L. Tucker, B. Yanny, D.G. York, Detection of the baryon acoustic peak in the large-scale correlation function of SDSS luminous red galaxies. Astrophys. J. 633, 560–574 (2005). astro-ph/0501171

    Google Scholar 

  16. W.M.A.P. Collaboration, G. Hinshaw, D. Larson, E. Komatsu, D.N. Spergel, C.L. Bennett, J. Dunkley, M.R. Nolta, M. Halpern, R.S. Hill, N. Odegard, L. Page, K.M. Smith, J.L. Weiland, B. Gold, N. Jarosik, A. Kogut, M. Limon, S.S. Meyer, G.S. Tucker, E. Wollack, E.L. Wright, Nine-year wilkinson microwave anisotropy probe (WMAP) observations: cosmological parameter results. Astrophys. J. Suppl. 208, 19 (2013). arXiv:1212.5226

    Article  ADS  Google Scholar 

  17. L. Anderson, É. Aubourg, S. Bailey, F. Beutler, V. Bhardwaj, M. Blanton, A.S. Bolton, J. Brinkmann, J.R. Brownstein, A. Burden, C.-H. Chuang, A.J. Cuesta, K.S. Dawson, D.J. Eisenstein, S. Escoffier, J.E. Gunn, H. Guo, S. Ho, K. Honscheid, C. Howlett, D. Kirkby, R.H. Lupton, M. Manera, C. Maraston, C.K. McBride, O. Mena, F. Montesano, R.C. Nichol, S.E. Nuza, M.D. Olmstead, N. Padmanabhan, N. Palanque-Delabrouille, J. Parejko, W.J. Percival, P. Petitjean, F. Prada, A.M. Price-Whelan, B. Reid, N.A. Roe, A.J. Ross, N.P. Ross, C.G. Sabiu, S. Saito, L. Samushia, A.G. Sánchez, D.J. Schlegel, D.P. Schneider, C.G. Scoccola, H.-J. Seo, R.A. Skibba, M.A. Strauss, M.E.C. Swanson, D. Thomas, J.L. Tinker, R. Tojeiro, M.V. Magaña, L. Verde, D.A. Wake, B.A. Weaver, D.H. Weinberg, M. White, X. Xu, C. Yèche, I. Zehavi, G.-B. Zhao. The clustering of galaxies in the SDSS-III baryon oscillation spectroscopic survey: baryon acoustic oscillations in the Data Releases 10 and 11 galaxy samples. Mon. Not. Roy. Astron. Soc. 441, 24–62 (2014). arXiv:1312.4877

  18. F. Zwicky, Die Rotverschiebung von extragalaktischen Nebeln. Helv. Phys. Acta 6, 110–127 (1933)

    ADS  MATH  Google Scholar 

  19. J.P. Ostriker, P.J.E. Peebles, A numerical study of the stability of flattened galaxies: or, can cold galaxies survive? Astrophys. J. 186, 467–480 (1973)

    Google Scholar 

  20. M.L. Wilson, J. Silk, On the anisotropy of the cosmological background matter and radiation distribution. I. The radiation anisotropy in a spatially flat universe. Astrophys. J. 243, 14–25 (1981)

    Google Scholar 

  21. M.L. Wilson, On the anisotropy of the cosmological background matter and radiation distribution. II. The radiation anisotropy in models with negative spatial curvature. Astrophys. J. 273, 2–15 (1983)

    Google Scholar 

  22. J.R. Bond, G. Efstathiou, Cosmic background radiation anisotropies in universes dominated by nonbaryonic dark matter. Astrophys. J. Lett. 285, L45–L48 (1984)

    Google Scholar 

  23. A. Bosma, 21-cm line studies of spiral galaxies. I. Observations of the galaxies NGC 5033, 3198, 5055, 2841, and 7331. II. The distribution and kinematics of neutral hydrogen in spiral galaxies of various morphological types. Astron. J. 86, 1791–1846 (1981)

    Google Scholar 

  24. K.G. Begeman, A.H. Broeils, R.H. Sanders, Extended rotation curves of spiral galaxies—dark haloes and modified dynamics. Mon. Not. Roy. Astron. Soc. 249, 523–537 (1991)

    Google Scholar 

  25. M. Markevitch, A.H. Gonzalez, L. David, A. Vikhlinin, S. Murray, W. Forman, C. Jones, W. Tucker, A textbook example of a bow shock in the merging galaxy cluster 1E 0657-56. Astrophys. J. Lett. 567, L27–L31 (2002). astro-ph/0110468

    Google Scholar 

  26. D. Clowe, A. Gonzalez, M. Markevitch, Weak-lensing mass reconstruction of the interacting cluster 1E 0657-558: direct evidence for the existence of dark matter. Astrophys. J. 604 596–603 (2004). astro-ph/0312273

    Google Scholar 

  27. N.A. Bahcall, L.M. Lubin, V. Dorman, Where is the dark matter? Astrophys. J. Lett. 447, L81 (1995). astro-ph/9506041

  28. R.G. Carlberg, H.K.C. Yee, E. Ellingson, R. Abraham, P. Gravel, S. Morris, C.J. Pritchet, Galaxy cluster virial masses and omega. Astrophys. J. 462, 32 (1996). astro-ph/9509034

    Google Scholar 

  29. A. Conley, J. Guy, M. Sullivan, N. Regnault, P. Astier, C. Balland, S. Basa, R.G. Carlberg, D. Fouchez, D. Hardin, I.M. Hook, D.A. Howell, R. Pain, N. Palanque-Delabrouille, K.M. Perrett, C.J. Pritchet, J. Rich, V. Ruhlmann-Kleider, D. Balam, S. Baumont, R.S. Ellis, S. Fabbro, H.K. Fakhouri, N. Fourmanoit, S. González-Gaitán, M.L. Graham, M.J. Hudson, E. Hsiao, T. Kronborg, C. Lidman, A.M. Mourao, J.D. Neill, S. Perlmutter, P. Ripoche, N. Suzuki, E.S. Walker, Supernova constraints and systematic uncertainties from the first three years of the supernova legacy survey. Astron. Astrophys. Suppl. 192, 1 (2011). arXiv:1104.1443

  30. N. Suzuki, D. Rubin, C. Lidman, G. Aldering, R. Amanullah, K. Barbary, L.F. Barrientos, J. Botyanszki, M. Brodwin, N. Connolly, K.S. Dawson, A. Dey, M. Doi, M. Donahue, S. Deustua, P. Eisenhardt, E. Ellingson, L. Faccioli, V. Fadeyev, H.K. Fakhouri, A.S. Fruchter, D.G. Gilbank, M.D. Gladders, G. Goldhaber, A.H. Gonzalez, A. Goobar, A. Gude, T. Hattori, H. Hoekstra, E. Hsiao, X. Huang, Y. Ihara, M.J. Jee, D. Johnston, N. Kashikawa, B. Koester, K. Konishi, M. Kowalski, E.V. Linder, L. Lubin, J. Melbourne, J. Meyers, T. Morokuma, F. Munshi, C. Mullis, T. Oda, N. Panagia, S. Perlmutter, M. Postman, T. Pritchard, J. Rhodes, P. Ripoche, P. Rosati, D.J. Schlegel, A. Spadafora, S.A. Stanford, V. Stanishev, D. Stern, M. Strovink, N. Takanashi, K. Tokita, M. Wagner, L. Wang, N. Yasuda, H.K.C. Yee, The supernova cosmology project. The hubble space telescope cluster supernova survey. V. improving the dark-energy constraints above z> 1 and building an early-type-hosted supernova sample. Astrophys. J. 746, 85 (2012). arXiv:1105.3470

  31. M. Tegmark, M.A. Strauss, M.R. Blanton, K. Abazajian, S. Dodelson, H. Sandvik, X. Wang, D.H. Weinberg, I. Zehavi, N.A. Bahcall, F. Hoyle, D. Schlegel, R. Scoccimarro, M.S. Vogeley, A. Berlind, T. Budavari, A. Connolly, D.J. Eisenstein, D. Finkbeiner, J.A. Frieman, J.E. Gunn, L. Hui, B. Jain, D. Johnston, S. Kent, H. Lin, R. Nakajima, R.C. Nichol, J.P. Ostriker, A. Pope, R. Scranton, U. Seljak, R.K. Sheth, A. Stebbins, A.S. Szalay, I. Szapudi, Y. Xu, J. Annis, J. Brinkmann, S. Burles, F.J. Castander, I. Csabai, J. Loveday, M. Doi, M. Fukugita, B. Gillespie, G. Hennessy, D.W. Hogg, Ž. Ivezić, G.R. Knapp, D.Q. Lamb, B.C. Lee, R.H. Lupton, T.A. McKay, P. Kunszt, J.A. Munn, L. O’Connell, J. Peoples, J.R. Pier, M. Richmond, C. Rockosi, D.P. Schneider, C. Stoughton, D.L. Tucker, D.E. vanden Berk, B. Yanny, D.G. York, Cosmological parameters from SDSS and WMAP. Phys. Rev. D 69, 103501 (2004). astro-ph/0310723

  32. M. Tegmark et al., SDSS Collaboration, Cosmological constraints from the SDSS luminous red galaxies. Phys. Rev. D 74, 123507 (2006). astro-ph/0608632

  33. D.H. Weinberg, J.S. Bullock, F. Governato, R. Kuzio de Naray, A.H.G. Peter, Cold dark matter: controversies on small scales. ArXiv e-prints (2013). arXiv:1306.0913

  34. X. Chen, Primordial non-gaussianities from inflation models. Adv. Astron. 2010, 72 (2010). arXiv:1002.1416

    Article  ADS  Google Scholar 

  35. M. Sato, T. Hamana, R. Takahashi, M. Takada, N. Yoshida, T. Matsubara, N. Sugiyama, Simulations of wide-field weak lensing surveys. I. Basic statistics and non-gaussian effects. Astrophys. J. 701, 945–954 (2009). arXiv:0906.2237

    Google Scholar 

  36. W. Hu, M. Tegmark, Weak lensing: prospects for measuring cosmological parameters. Astrophys. J. Lett. 514, L65–L68 (1999). astro-ph/9811168

    Google Scholar 

  37. W. Hu, Power spectrum tomography with weak lensing. Astrophys. J. Lett. 522, L21–L24 (1999). astro-ph/9904153

    Google Scholar 

  38. C. M. Hirata, U. Seljak, Intrinsic alignment-lensing interference as a contaminant of cosmic shear. Phys. Rev. D 70, 063526 (2004). astro-ph/0406275

  39. D. Kirk, A. Rassat, O. Host, S. Bridle, The cosmological impact of intrinsic alignment model choice for cosmic shear. Mon. Not. Roy. Astron. Soc. 424, 1647–1657 (2012). arXiv:1112.4752

    Google Scholar 

  40. B. Joachimi, R. Mandelbaum, F.B. Abdalla, S.L. Bridle, Constraints on intrinsic alignment contamination of weak lensing surveys using the MegaZ-LRG sample. Astron. Astrophys. 527, A26 (2011). arXiv:1008.3491

    Google Scholar 

  41. D. Huterer, M. Takada, G. Bernstein, B. Jain, Systematic errors in future weak-lensing surveys: requirements and prospects for self-calibration. Mon. Not. Roy. Astron. Soc. 366, 101–114 (2006). astro-ph/0506030

    Google Scholar 

  42. R. Massey, H. Hoekstra, T. Kitching, J. Rhodes, M. Cropper, J. Amiaux, D. Harvey, Y. Mellier, M. Meneghetti, L. Miller, S. Paulin-Henriksson, S. Pires, R. Scaramella, T. Schrabback, Origins of weak lensing systematics, and requirements on future instrumentation (or knowledge of instrumentation). Mon. Not. Roy. Astron. Soc. 429, 661–678 (2013). arXiv:1210.7690

    Google Scholar 

  43. J.A. Tyson, F. Valdes, J.F. Jarvis, A.P. Mills, Jr., Galaxy mass distribution from gravitational light deflection. Astrophys. J. Lett. 281, L59–L62 (1984)

    Google Scholar 

  44. L. van Waerbeke, Scale dependence of the bias investigated by weak lensing. Astron. Astrophys. 334, 1–10 (1998). astro-ph/9710244

  45. P. Schneider, Cosmic shear and biasing. Astrophys. J. 498, 43–47 (1998). astro-ph/9708269

    Google Scholar 

  46. U. Seljak, A. Makarov, R. Mandelbaum, C.M. Hirata, N. Padmanabhan, P. McDonald, M.R. Blanton, M. Tegmark, N.A. Bahcall, J. Brinkmann, SDSS galaxy bias from halo mass-bias relation and its cosmological implications. Phys. Rev. D 71, 043511 (2005). astro-ph/0406594

  47. T. Baldauf, R.E. Smith, U. Seljak, R. Mandelbaum, Algorithm for the direct reconstruction of the dark matter correlation function from weak lensing and galaxy clustering. Phys.Rev. D 81, 063531 (2010). arXiv:0911.4973

  48. R. Mandelbaum, A. Slosar, T. Baldauf, U. Seljak, C.M. Hirata, R. Nakajima, R. Reyes, R.E. Smith, Cosmological parameter constraints from galaxy-galaxy lensing and galaxy clustering with the SDSS DR7. Mon. Not. Roy. Astron. Soc. 432, 1544–1575 (2013). arXiv:1207.1120

    Google Scholar 

  49. M. Oguri, M. Takada, Combining cluster observables and stacked weak lensing to probe dark energy: self-calibration of systematic uncertainties. Phys. Rev. D 83, 023008 (2011). arXiv:1010.0744

    Article  ADS  Google Scholar 

  50. W. Hu, B. Jain, Joint galaxy-lensing observables and the dark energy. Phys. Rev. D 70, 043009 (2004). astro-ph/0312395

  51. F. Bernardeau, L. van Waerbeke, and Y. Mellier, Weak lensing statistics as a probe of OMEGA and power spectrum., Astronomy and Astrophysics 322 (June, 1997) 1–18, [astro-ph/9609122]

    Google Scholar 

  52. L. Hui, Weighing the cosmological energy contents with weak gravitational lensing. Astrophys. J. Lett. 519, L9–L12 (1999). astro-ph/9902275

    Google Scholar 

  53. M. Takada, B. Jain, Cosmological parameters from lensing power spectrum and bispectrum tomography. Mon. Not. Roy. Astron. Soc. 348, 897–915 (2004). astro-ph/0310125

    Google Scholar 

  54. I. Kayo, M. Takada, B. Jain, Information content of weak lensing power spectrum and bispectrum: including the non-Gaussian error covariance matrix. Mon. Not. Roy. Astron. Soc. 429, 344–371 (2013). arXiv:1207.6322

    Google Scholar 

  55. T. Hamana, M. Takada, N. Yoshida, Searching for massive clusters in weak lensing surveys. Mon. Not. Roy. Astron. Soc. 350, 893 (2004). astro-ph/0310607

    Article  ADS  Google Scholar 

  56. J.F. Hennawi, D.N. Spergel, Shear-selected cluster cosmology: tomography and optimal filtering. Astrophys. J. 624, 59–79 (2005). astro-ph/0404349

    Google Scholar 

  57. L. Marian, G.M. Bernstein, Dark energy constraints from lensing-detected galaxy clusters. Phys. Rev. D 73, 123525 (2006). astro-ph/0605746

  58. W. Fang, Z. Haiman, Constraining dark energy by combining cluster counts and shear-shear correlations in a weak lensing survey. Phys. Rev. D 75, 043010 (2007). astro-ph/0612187

  59. M. Takada, S. Bridle, Probing dark energy with cluster counts and cosmic shear power spectra: including the full covariance. New J. Phys. 9 446. arXiv:0705.0163

    Google Scholar 

  60. L. Marian, R. E. Smith, S. Hilbert, P. Schneider, The cosmological information of shear peaks: beyond the abundance. Mon. Not. Roy. Astron. Soc. 432, 1338–1350 (2013). arXiv:1301.5001

    Google Scholar 

  61. D. Bard, J.M. Kratochvil, C. Chang, M. May, S.M. Kahn, Y. AlSayyad, Z. Ahmad, J. Bankert, A. Connolly, R.R. Gibson, K. Gilmore, E. Grace, Z. Haiman, M. Hannel, K.M. Huffenberger, J.G. Jernigan, L. Jones, S. Krughoff, S. Lorenz, S. Marshall, A. Meert, S. Nagarajan, E. Peng, J. Peterson, A.P. Rasmussen, M. Shmakova, N. Sylvestre, N. Todd, M. Young, Effect of Measurement errors on predicted cosmological constraints from shear peak statistics with large synoptic survey telescope. Astrophys. J. 774, 49 (2013). arXiv:1301.0830

    Google Scholar 

  62. X. Liu, Q. Wang, C. Pan, Z. Fan, Mask effects on cosmological studies with weak-lensing peak statistics. Astrophys. J. 784, 31 (2014). arXiv:1304.2873

    Google Scholar 

  63. Y. Utsumi, S. Miyazaki, M.J. Geller, I.P. Dell’Antonio, M. Oguri, M.J. Kurtz, T. Hamana, D.G. Fabricant, Reducing systematic error in weak lensing cluster surveys. Astrophys. J. 786, 93 (2014). arXiv:1304.4656

    Google Scholar 

  64. M. Shirasaki, N. Yoshida, T. Hamana, Effect of masked regions on weak-lensing statistics. Astrophys. J. 774, 111 (2013). arXiv:1304.2164

    Google Scholar 

  65. M. Shirasaki, N. Yoshida, Statistical and systematic errors in the measurement of weak-lensing minkowski functionals: application to the Canada-France-Hawaii lensing survey. Astrophys. J. 786, 43 (2014). arXiv:1312.5032

    Google Scholar 

  66. M. Shirasaki, S. Horiuchi, N. Yoshida, Cross-correlation of cosmic shear and extragalactic gamma-ray background: constraints on the dark matter annihilation cross-section. Phys. Rev. D 90, 063502 (2014). arXiv:1404.5503

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masato Shirasaki .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Shirasaki, M. (2016). Introduction to Observational Cosmology. In: Probing Cosmic Dark Matter and Dark Energy with Weak Gravitational Lensing Statistics. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-287-796-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-287-796-3_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-287-795-6

  • Online ISBN: 978-981-287-796-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics