Skip to main content

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

Abstract

Gasification of lignocellulosic biomass has attracted substantial current research interest. Various possible routes to convert biomass to fuels have been explored. In the present chapter, an overview of the gasification processes and their possible products are discussed. Gasification of solid biomass and steam and aqueous-phase reforming is discussed with a special emphasis on supercritical condition operations. The production of synthesis gas from biomass and its contaminants with their permissible limits are covered along with the cleanup and upgrading of the resulting syngas. The chapter ends with conclusions and an outlook for future opportunities and challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. van Rossum G, Kersten SRA, van Swaaij WPM (2007) Catalytic and noncatalytic gasification of pyrolysis oil. Ind Eng Chem Res 46(12):3959–3967. doi:10.1021/ie061337y

    Article  Google Scholar 

  2. Higman C, van der Burgt M (2003) Chapter 5 – Gasification processes. In: Higman C, Burgt Mvd (eds) Gasification. Gulf Professional Publishing, Burlington, pp 85–170. doi:http://dx.doi.org/10.1016/B978-075067707-3/50005-X

    Google Scholar 

  3. Wei L, Pordesimo LO, Haryanto A, Wooten J (2011) Co-gasification of hardwood chips and crude glycerol in a pilot scale downdraft gasifier. Bioresource Technol 102(10):6266–6272. doi:http://dx.doi.org/10.1016/j.biortech.2011.02.109

    Google Scholar 

  4. Gutiérrez Ortiz FJ, Campanario FJ, Aguilera PG, Ollero P (2015) Hydrogen production from supercritical water reforming of glycerol over Ni/Al2O3–SiO2 catalyst. Energy 84(0):634–642. doi:http://dx.doi.org/10.1016/j.energy.2015.03.046

    Google Scholar 

  5. Farrauto RJ, Heck RM (2000) Environmental catalysis into the 21st century. Catal Today 55(1–2):179–187. doi:http://dx.doi.org/10.1016/S0920-5861(99)00237-0

    Google Scholar 

  6. Sutton D, Kelleher B, Ross JRH (2001) Review of literature on catalysts for biomass gasification. Fuel Process Technol 73(3):155–173. doi:http://dx.doi.org/10.1016/S0378-3820(01)00208-9

    Google Scholar 

  7. Olivares A, Aznar MP, Caballero MA, Gil J, Francés E, Corella J (1997) Biomass gasification: produced gas upgrading by in-bed use of dolomite. Ind Eng Chem Res 36(12):5220–5226. doi:10.1021/ie9703797

    Article  Google Scholar 

  8. Corella J, Aznar M-P, Gil J, Caballero MA (1999) Biomass gasification in fluidized bed: where to locate the dolomite to improve gasification? Energy Fuel 13(6):1122–1127. doi:10.1021/ef990019r

    Article  Google Scholar 

  9. Caballero MA, Corella J, Aznar M-P, Gil J (2000) Biomass gasification with air in fluidized bed. Hot gas cleanup with selected commercial and full-size nickel-based catalysts. Ind Eng Chem Res 39(5):1143–1154. doi:10.1021/ie990738t

    Article  Google Scholar 

  10. Rapagnà S, Jand N, Kiennemann A, Foscolo PU (2000) Steam-gasification of biomass in a fluidised-bed of olivine particles. Biomass Bioenergy 19(3):187–197. doi:http://dx.doi.org/10.1016/S0961-9534(00)00031-3

    Google Scholar 

  11. Corella J, Toledo JM, Padilla R (2004) Olivine or dolomite as in-bed additive in biomass gasification with air in a fluidized bed: which is better? Energy Fuel 18(3):713–720. doi:10.1021/ef0340918

    Article  Google Scholar 

  12. Güell BM, Seshan K, Lefferts L (2008) Hydrogen from biomass derived oxygenates – steam reforming of acetic acid over supported nickel-catalysts In: International conference on environmental catalysis, Belfast

    Google Scholar 

  13. Takanabe K, Aika K-i, Inazu K, Baba T, Seshan K, Lefferts L (2006) Steam reforming of acetic acid as a biomass derived oxygenate: bifunctional pathway for hydrogen formation over Pt/ZrO2 catalysts. J Catal 243(2):263–269. doi:http://dx.doi.org/10.1016/j.jcat.2006.07.020

    Google Scholar 

  14. Czernik S, French R, Feik C, Chornet E (2002) Hydrogen by catalytic steam reforming of liquid byproducts from biomass thermoconversion processes. Ind Eng Chem Res 41(17):4209–4215. doi:10.1021/ie020107q

    Article  Google Scholar 

  15. Magrini-Bair KA, Czernik S, French R, Parent YO, Chornet E, Dayton DC, Feik C, Bain R (2007) Fluidizable reforming catalyst development for conditioning biomass-derived syngas. Appl Catal A General 318(0):199–206. doi:http://dx.doi.org/10.1016/j.apcata.2006.11.005

    Google Scholar 

  16. Czernik S, Evans R, French R (2007) Hydrogen from biomass-production by steam reforming of biomass pyrolysis oil. Catal Today 129(3–4):265–268. doi:http://dx.doi.org/10.1016/j.cattod.2006.08.071

    Google Scholar 

  17. van Rossum G, Potic B, Kersten SRA, van Swaaij WPM (2009) Catalytic gasification of dry and wet biomass. Catal Today 145(1–2):10–18. doi:http://dx.doi.org/10.1016/j.cattod.2008.04.048

    Google Scholar 

  18. Rioche C, Kulkarni S, Meunier FC, Breen JP, Burch R (2005) Steam reforming of model compounds and fast pyrolysis bio-oil on supported noble metal catalysts. Appl Catal B Environ 61(1–2):130–139. doi:http://dx.doi.org/10.1016/j.apcatb.2005.04.015

    Google Scholar 

  19. Basagiannis AC, Verykios XE (2007) Steam reforming of the aqueous fraction of bio-oil over structured Ru/MgO/Al2O3 catalysts. Catal Today 127(1–4):256–264. doi:http://dx.doi.org/10.1016/j.cattod.2007.03.025

    Google Scholar 

  20. Takanabe K, Aika K-I, Seshan K, Lefferts L (2008) Mechanistic aspects of catalytic steam reforming of biomass-related oxygenates. Top Catal 49(1–2):68–72. doi:10.1007/s11244-008-9068-1

    Article  Google Scholar 

  21. Matas Güell B, Silva IMTd, Seshan K, Lefferts L (2009) Sustainable route to hydrogen – design of stable catalysts for the steam gasification of biomass related oxygenates. Appl Catal B Environ 88(1–2):59–65. doi:http://dx.doi.org/10.1016/j.apcatb.2008.09.018

    Google Scholar 

  22. Cortright RD, Davda RR, Dumesic JA (2002) Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. Nature 418(6901):964–967

    Article  Google Scholar 

  23. Shabaker JW, Davda RR, Huber GW, Cortright RD, Dumesic JA (2003) Aqueous-phase reforming of methanol and ethylene glycol over alumina-supported platinum catalysts. J Catal 215(2):344–352. doi:http://dx.doi.org/10.1016/S0021-9517(03)00032-0

    Google Scholar 

  24. Huber GW, Shabaker JW, Evans ST, Dumesic JA (2006) Aqueous-phase reforming of ethylene glycol over supported Pt and Pd bimetallic catalysts. Appl Catal B Environ 62(3–4):226–235. doi:http://dx.doi.org/10.1016/j.apcatb.2005.07.010

    Google Scholar 

  25. Davda RR, Shabaker JW, Huber GW, Cortright RD, Dumesic JA (2003) Aqueous-phase reforming of ethylene glycol on silica-supported metal catalysts. Appl Catal B Environ 43(1):13–26. doi:http://dx.doi.org/10.1016/S0926-3373(02)00277-1

    Google Scholar 

  26. Cortright RD, Dumesic JA (2007) Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions. Google Patents

    Google Scholar 

  27. Kersten SRA, Potic B, Prins W, Van Swaaij WPM (2006) Gasification of model compounds and wood in hot compressed water. Ind Eng Chem Res 45(12):4169–4177. doi:10.1021/ie0509490

    Article  Google Scholar 

  28. Matsumura Y, Minowa T, Potic B, Kersten SRA, Prins W, van Swaaij WPM, van de Beld B, Elliott DC, Neuenschwander GG, Kruse A, Jerry Antal Jr M (2005) Biomass gasification in near- and super-critical water: status and prospects. Biomass Bioenergy 29(4):269–292. doi:http://dx.doi.org/10.1016/j.biombioe.2005.04.006

    Google Scholar 

  29. Sealock LJ, Elliott DC, Baker EG, Butner RS (1993) Chemical processing in high-pressure aqueous environments. 1. Historical perspective and continuing developments. Ind Eng Chem Res 32(8):1535–1541. doi:10.1021/ie00020a001

    Article  Google Scholar 

  30. Elliott DC, Sealock LJ Jr, Baker EG (1994) Chemical processing in high-pressure aqueous environments. 3. Batch reactor process development experiments for organics destruction. Ind Eng Chem Res 33(3):558–565. doi:10.1021/ie00027a012

    Article  Google Scholar 

  31. Elliott DC, Hart TR, Neuenschwander GG (2006) Chemical processing in high-pressure aqueous environments. 8. Improved catalysts for hydrothermal gasification. Ind Eng Chem Res 45(11):3776–3781. doi:10.1021/ie060031o

    Article  Google Scholar 

  32. Waldner MH, Vogel F (2005) Renewable production of methane from woody biomass by catalytic hydrothermal gasification. Ind Eng Chem Res 44(13):4543–4551. doi:10.1021/ie050161h

    Article  Google Scholar 

  33. Takanabe K, Aika K-i, Seshan K, Lefferts L (2006) Catalyst deactivation during steam reforming of acetic acid over Pt/ZrO2. Chem Eng J 120(1–2):133–137. doi:http://dx.doi.org/10.1016/j.cej.2006.04.001

    Google Scholar 

  34. Kiss AB, Keresztury G, Farkas L (1980) Raman and i.r. spectra and structure of boehmite (γ-AlOOH). Evidence for the recently discarded D172h space group. Spectrochim Acta Part A Mol Spectrosc 36(7):653–658. doi:http://dx.doi.org/10.1016/0584-8539(80)80024-9

    Google Scholar 

  35. Huber GW, Shabaker J, Dumesic J (2003) Raney Ni-Sn catalyst for H2 production from biomass-derived hydrocarbons. Science 300(5628):2075–2077

    Article  Google Scholar 

  36. Sınaǧ A, Kruse A, Schwarzkopf V (2003) Key compounds of the hydropyrolysis of glucose in supercritical water in the presence of K2CO3. Ind Eng Chem Res 42(15):3516–3521. doi:10.1021/ie030079r

    Article  Google Scholar 

  37. Antal MJ, Allen SG, Schulman D, Xu X, Divilio RJ (2000) Biomass gasification in supercritical water†. Ind Eng Chem Res 39(11):4040–4053. doi:10.1021/ie0003436

    Article  Google Scholar 

  38. Soares RR, Simonetti DA, Dumesic JA (2006) Glycerol as a source for fuels and chemicals by low-temperature catalytic processing. Angew Chem Int Ed 45(24):3982–3985. doi:10.1002/anie.200600212

    Article  Google Scholar 

  39. Hirai T, N-o I, Miyake T, Suzuki T (2005) Production of hydrogen by steam reforming of glycerin on ruthenium catalyst. Energy Fuel 19(4):1761–1762. doi:10.1021/ef050121q

    Article  Google Scholar 

  40. Balegedde Ramachandran RP, van Rossum G, van Swaaij WPM, Kersten SRA (2011) Preliminary assessment of synthesis gas production via hybrid steam reforming of methane and glycerol. Energy Fuel 25(12):5755–5766. doi:10.1021/ef201428a

    Article  Google Scholar 

  41. Gallegos-Suárez E, Guerrero-Ruiz A, Fernández-García M, Rodríguez-Ramos I, Kubacka A (2015) Efficient and stable Ni–Ce glycerol reforming catalysts: chemical imaging using X-ray electron and scanning transmission microscopy. Appl Catal B Environ 165(0):139–148. doi:http://dx.doi.org/10.1016/j.apcatb.2014.10.007

    Google Scholar 

  42. Franchini CA, Aranzaez W, Duarte de Farias AM, Pecchi G, Fraga MA (2014) Ce-substituted LaNiO3 mixed oxides as catalyst precursors for glycerol steam reforming. Appl Catal B Environ 147(0):193–202. doi:http://dx.doi.org/10.1016/j.apcatb.2013.08.036

    Google Scholar 

  43. Ciftci A, Ligthart DAJM, Hensen EJM (2014) Aqueous phase reforming of glycerol over Re-promoted Pt and Rh catalysts. Green Chem 16(2):853–863. doi:10.1039/C3GC42046A

    Article  Google Scholar 

  44. Production of Hydrogen from Aqueous Phase Reforming of Glycerol: Economic Evaluation (2013)

    Google Scholar 

  45. Zhou C-H, Beltramini JN, Fan Y-X, Lu GQ (2008) Chemoselective catalytic conversion of glycerol as a biorenewable source to valuable commodity chemicals. Chem Soc Rev 37(3):527–549. doi:10.1039/B707343G

    Article  Google Scholar 

  46. Vaidya PD (2009) Glycerol reforming for hydrogen production: a review

    Google Scholar 

  47. Lee S, Sardesai A (2005) Liquid phase methanol and dimethyl ether synthesis from syngas. Top Catal 32(3–4):197–207. doi:10.1007/s11244-005-2891-8

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the University of Twente, the Netherlands, for providing the facilities for carrying out experimental work reported in the chapter. One of the authors (KS) thanks the Dutch Science Foundation for financing research projects in different programs (ACTS, CATCHBIO, GSPT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Seshan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Pramod, C.V., Seshan, K. (2016). Catalytic Gasification of Lignocellulosic Biomass. In: Schlaf, M., Zhang, Z. (eds) Reaction Pathways and Mechanisms in Thermocatalytic Biomass Conversion II. Green Chemistry and Sustainable Technology. Springer, Singapore. https://doi.org/10.1007/978-981-287-769-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-287-769-7_9

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-287-768-0

  • Online ISBN: 978-981-287-769-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics