Skip to main content

Plasma-based Radar Cross Section Reduction

  • Chapter
  • First Online:
Plasma-based Radar Cross Section Reduction

Abstract

The concealment of aircraft from radar sources or stealth is achieved either through shaping, or radar absorbing coatings, or engineered materials, or plasma, etc. Plasma-based stealth is a radar cross-section (RCS) reduction technique associated with the reflection and absorption of incident electromagnetic (EM) wave by the plasma layer surrounding the structure. Plasma cloud covering the aircraft may give rise to other signatures such as thermal, acoustic, infrared, or visual. Thus it is a matter of concern that the RCS reduction by plasma enhances its detectability due to other signatures. This needs a careful approach toward the plasma generation and its EM wave interaction. This book presents a comprehensive review of the plasma-based stealth, covering the basics, methods, parametric analysis, and challenges toward the realization of the idea. The book starts with the basics of EM wave interactions with plasma, briefly discusses the methods used to analyze the propagation characteristics of plasma, and its generation. It presents the parametric analysis of propagation behavior of plasma, and the challenges in the implementation of plasma-based stealth technology. This review serves as a starting point for graduate and research students, scientists, and engineers working in the area of low-observables and stealth technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexef, I., W.L. Kang, M. Rader, C. Douglass, D. Kintner, R. Ogot, and E. Norris. 1998. A plasma stealth antenna for the U.S navy. In Proceedings of IEEE International Conference on Plasma Science, Raleigh, NC, USA, 1 pp. 1–4 June 1998.

    Google Scholar 

  • Anderson, T., S. Parameswaran, E.P. Pradeep, J. Hulloli, and P. Hulloli. 2006. Experimental and theoretical results with plasma antennas. IEEE Transactions on Plasma Science 34(2): 166–172. April 2006.

    Article  Google Scholar 

  • Beskar, C.R. 2004. Cold plasma cavity active stealth technology,” Technical White paper, Stavatti Military Aerospace: Tactical Air Warfare Systems Division, South St. Paul MN, USA, 11 p., November 2004.

    Google Scholar 

  • Blackledge, J.M. 2007. Modeling and computer simulation of radar screening using plasma clouds. ISAT Transactions on Electronics and Signal processing 1(1): 61–71. January 2007.

    MathSciNet  Google Scholar 

  • Born, M., and E. Wolf. 2002. In Principles of Optics; Electromagnetic Theory of Propagation, Interference and Diffraction of Light. 7th edn. Cambridge, UK: Cambridge University Press, ISBN: 0521642221, 952 pp.

    Google Scholar 

  • Cadirci, S. 2009. RF Stealth (low observable) and counter RF stealth technologies: Implications of counter RF stealth solutions for Turkish Air Force. Naval Postgraduate School, Monterey, California, Master’s Thesis Report, 161 pp., March 2009.

    Google Scholar 

  • Chaohui, L., H. Xiwei, and J. Zhonghe. 2008. Interaction of electromagnetic waves with two-dimensional metal covered with radar absorbing material and plasma. Plasma Science and Technology 10(6): 717. 2008.

    Article  Google Scholar 

  • Chaudhury, B., and S. Chaturvedi. 2007. Radar cross section reduction using plasma blobs: 3D finite difference time domain simulations. In Proceedings of IEEE Applied Electromagnetic Conference, Kolkata, 4 pp., 19–20 December 2007.

    Google Scholar 

  • Chaudhury, B., and S. Chaturvedi. 2009. Study and optimization of plasma based radar cross section reduction using three dimensional computations. IEEE Transactions on Plasma Science 37(11): 2116–2127. January 2007.

    Article  Google Scholar 

  • Chaudhury, B., and S. Chaturvedi. 2005. Three dimensional computation of reduction in radar cross section using plasma shielding. IEEE Transactions on Plasma Science 33(6): 2027–2034. December 2005.

    Article  Google Scholar 

  • Chawla, B.R., and H. Unz. 1969. Reflection and transmission of electromagnetic waves normally incident on a plasma slab moving uniformly along a magnetostatic field. IEEE Transactions on Antennas and Propagation 17(6): 771–777. November 1969.

    Article  Google Scholar 

  • Chen, F.F. 1974. Introduction to plasma physics. New York: Plenum press, ISBN: 0-306-30755-3, 329 pp.

    Google Scholar 

  • Dinklage, A. 2005. Plasma physics: confinement, transport and collective effect. New York: Springer, ISBN: 3540252746, 496 pp.

    Google Scholar 

  • Froula, D.H., S.H. Glenzer, N.C. Luhmann, Jr., and J. Sheffield. 2011. Plasma Scattering of Electromagnetic Radiation: Theory and Measurement Techniques. 2nd edn. Burlington, MA, USA: Elsevier, Academic Press, ISBN: 9780123748775, 497 pp.

    Google Scholar 

  • Geng, Y.L. 2011. Scattering of plane wave by an anisotropic plasma-coated conducting sphere. International Journal of Antennas and Propagation 2011:6. Article Id 409764. 2011.

    Google Scholar 

  • Ginzburg, V.L. 1961. Propagation of electromagnetic waves in plasma. New York: Gordon and Breach Science Publishers, ISBN-10: 0677200803, 822 pp.

    Google Scholar 

  • Gregoire, D.J., J. Santoru, and R.W. Schumacher. 1992. Electromagnetic wave propagation in unmagnetized plasmas. Technical Report, Hughes Research Labs, Malibu, CA, 66 pp., March 1992.

    Google Scholar 

  • Gruel, C.S., and E. Oncu. 2009. Interaction of electromagnetic wave and plasma slab with partially linear and sinusoidal electron density profile. Progress in Electromagnetic Research Letters 12: 171–181. 2009.

    Article  Google Scholar 

  • Gu, W., Y. Lei, W. Taosheng, F. Ning, M. Jungang, and W. Baofa. 2009. “RCS calculation of complex targets shielded with plasma based on visual GRECO method. In Proceedings of International Symposium on Microwave Antenna Propagation and EMC Technologies for Wireless Communications, Beijing, pp. 950–953, Oct 2009.

    Google Scholar 

  • Hu, B.J., G. Wei, and S.L. Lai. 1999. SMM analysis of reflection, absorption and transmission from nonuniform magnetized plasma slab. IEEE Transactions on Plasma Science 27(4): 1131–1136. August 1999.

    Article  Google Scholar 

  • Jenn, D.C. 2005. Radar and Laser Cross Section Engineering. 2nd ed., AIAA Education Series, Washington DC, ISBN-13: 9781563477027, 505 pp.

    Google Scholar 

  • Laroussi, M., and J.R. Roth. 1993. Numerical calculation of the reflection, absorption and transmission of microwaves by nonuniform plasma slab. IEEE Transactions on Plasma Science 21(24): 366–372. August 1993.

    Article  Google Scholar 

  • Liu, S., and S. Zhong. 2012. FDTD study on scattering for conducting target coated with magnetized plasma of time varying parabolic density distribution. Progress in Electromagnetics Research M 22: 13–25. January 2012.

    Article  Google Scholar 

  • Ma, L.X., H. Sang, L. Zhu, and X.J. Gao. 2010a. Analysis on the refraction stealth characteristics of cylindrical plasma envelopes. In Proceedings of International Conference on Microwave and Millimeter wave Technology, Chengdu, pp. 1695–1698, May 2010.

    Google Scholar 

  • Ma, L.X., H. Zang, Z. Li, and C.X. Zhang. 2010b. Analysis on the stealth characteristics of two dimensional cylinder plasma envelopes. Progress in Electromagnetic Research Letters 13: 83–92. 2010.

    Google Scholar 

  • Ma, L.X., H. Zhang, and C.X. Zhang. 2008. Analysis on the reflection characteristic of the electromagnetic wave incidence in closed non magnetized plasma. Journal of Electromagnetic waves and Applications 22(17–18): 2285–2296. 2008.

    Article  Google Scholar 

  • Mo, J., and N. Yuan. 2008. Analytical solution of reflection coefficient microwaves oblique incidence on a nonuniform magnetized plasma slab. International Conference on Microwave and Millimeter wave Technology, Nanjing 4: 1930–1933. April 2008.

    Google Scholar 

  • Roth, J.R. 1994. Interaction of electromagnetic fields with magnetized plasmas. Scientific Report PSL-94-3, UTK Plasma Science Laboratory, University of Tennessee, Knoxville, TN, 329 pp., March 1994.

    Google Scholar 

  • Ruifeng, L., and S. Donglin. 2003. Emulation research about feasibility of reducing dihedral corner reflector RCS with plasma. In Asia Pacific Conference on Environmental Electromagnetics, Hangzhou, China, pp. 523–526, Nov 4–7, 2003.

    Google Scholar 

  • Sadeghikia, F., and F.H. Kashani. 2013. A two element plasma antenna array. ETASR-Engineering, Technology & Applied Science Research 3(5): 516–521. 2013.

    Google Scholar 

  • Seshadri, S.R. 1973. Fundamentals of Plasma Physics.American Elsevier Publisher, New York, ISBN: 0-444-00125-5, 545 pp.

    Google Scholar 

  • Singh, A.K., B.S. Bhadoria, A.K. Kushwaha, and K. Chaturvedi. 2005. Scope and Challenge in Plasma: Science & Technology. Allied Pub, New Delhi, ISBN: 81-77648659, 141 pp.

    Google Scholar 

  • Singh, Y.P., and A.S. Shekhawat. 1983. Interaction of obliquely incident electromagnetic wave with collisional, magnetized and moving plasma slab. Acta Physica Hungarica 54: 101–109. 1983.

    Google Scholar 

  • Skolnik, M.I. 2003. Introduction to Radar Systems, 3rd edn. New York: Tata McGraw-Hill Education, ISBN: 0070445338, 772 pp.

    Google Scholar 

  • Stanic, B.V., and V.K. Okretic. 1975. Reflection of electromagnetic waves by a moving ionized layer with parabolic electron density profile. Univ. Beograd. Purl. Elektrotehn. Fak. 15: 225–234. 1975.

    Google Scholar 

  • Swarner, W.G., and L. Peters. 1963. Radar cross sections of dielectric or plasma coated conducting spheres and circular cylinders. IEEE Transactions on Antennas and Propagation 11(5): 558–569. September 1963.

    Article  Google Scholar 

  • Taosheng, W., Y. Lei, W. Gu, F. Ning, and W. Baofa. 2009. Visual computing method of radar cross section for target coating with plasma. Chinese Journal of Electronics 18(3): 579–582. July 2009.

    Google Scholar 

  • Vass, S. 2003. Stealth technology deployed on the battle field. Informatics Robotics 2(2): 257–269. 2003.

    Google Scholar 

  • Vidmar, R.J. 1990. On the use of atmospheric pressure plasmas as electromagnetic reflectors and absorbers. IEEE Transactions on Plasma Science 18(4): 733–741. August 1990.

    Article  Google Scholar 

  • Williams, E.R., and S.G. Geotis. 1989. A radar study of the plasma and geometry of lightning. Journal of the Atmospheric Sciences 46(9): 1173–1185. May 1989.

    Article  Google Scholar 

  • Yin, X., H. Zhang, S. Sun, Z. Zhao, and Y. Hu. 2013. Analysis of propagation and polarization characteristics of electromagnetic waves through the nonuniform magnetized plasma slab using propagator matrix method. Progress in Electromagnetic Research 137: 159–186. 2013.

    Article  Google Scholar 

  • Yu, Z., Z. Zhang, L. Zhou, and W. Hu. 2003. Numerical research on the RCS of plasma. In International Symposium on Antennas, Propagation and EM Theory, Beijing, China, pp. 428–432, Oct, 28–Nov, 1, 2003.

    Google Scholar 

  • Yuan, C.X., Z.X. Zhou, and H.G. Sun. 2010. Reflection properties of electromagnetic wave in a bounded plasma slab. IEEE Transactions on Plasma Science 38(12): 3348–3355. December 2010.

    Article  Google Scholar 

  • Yuan, C.X., Z.X. Zhou, J.W. Zhang, X.L. Xiang, Y. Feng, and H.G. Sun. 2011. Properties of propagation of electromagnetic wave in a multilayer radar absorbing structure with plasma and radar absorbing material. IEEE Transactions on Plasma Science 39(9): 1768–1775. September 2011.

    Article  Google Scholar 

  • Zhengli, H., J. Ding, P. Chen, Z. Zhang, and C. Guo, FDTD analysis of three dimensional target covered with inhomogeneous unmagnetized plasma. In International Conference on Microwave and Millimeter wave Technology, Chengdu, pp. 125–128, May 8–11, 2010.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hema Singh .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Singh, H., Antony, S., Jha, R. (2016). Plasma-based Radar Cross Section Reduction. In: Plasma-based Radar Cross Section Reduction. SpringerBriefs in Electrical and Computer Engineering(). Springer, Singapore. https://doi.org/10.1007/978-981-287-760-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-287-760-4_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-287-759-8

  • Online ISBN: 978-981-287-760-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics