Skip to main content

A Physical Approach to Swarming

  • Chapter
  • First Online:
Design and Control of Swarm Dynamics

Part of the book series: SpringerBriefs in Complexity ((BRIEFSCOMPLEXITY))

  • 1310 Accesses

Abstract

The previous chapter was centered on awe-inspiring collective behaviors observed in the animal kingdom, and how this inspirational bounty can be harnessed to develop innovative swarm designs. We stressed two important points related to some very common collective behaviors: (1) they occur across vastly different spatial scales—from the microscale world to our macroscale world, and (2) they emerge across immensely different taxa—from bacteria to quadrupeds. When faced with such empirical evidences, the physicist will immediately suggest the existence of universal mechanisms at the root of collective phenomena that would justify and explain such commonalities in dynamic behaviors. This may appear counterintuitive at first since the fundamental laws of physics yield forces and energies of very different magnitudes across a wide range of scales. For instance, swimming at the micrometer scale requires aggregating microorganisms—e.g. bacteria or amoebae—to power themselves by harnessing viscous forces which form the main source of drag for macroscale schooling fish. The undeniable successes of physics in the past centuries certainly come from an uninterrupted search for universality across seemingly unrelated phenomena—e.g. dispersion in optical waves and dispersion in mechanical waves. It comes therefore with no surprise that physicists have been extremely active, and successful, in the past two decades uncovering the prominent universal mechanisms at play in collective phenomena at large. This chapter will present a brief overview of those while stressing their importance for the designer of swarming systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Nicolis, I. Prigogine, Exploring Complexity: An Introduction (W. H. Freedman and Co., New York, 1989)

    Google Scholar 

  2. S. Wolfram, Cellular Automata and Complexity (Westview Press, Boulder, 1994)

    MATH  Google Scholar 

  3. B. Chopard, M. Droz, Cellular Automata Modeling of Physical Systems (Cambridge University Press, Cambridge, 1998)

    Book  MATH  Google Scholar 

  4. P. Bak, C. Tang, K. Wiesenfeld, Self-organized criticality: an explanation of 1/f noise. Phys. Rev. Lett. 59(4), 381–384 (1987)

    Article  Google Scholar 

  5. P. Bak, How Nature Works: The Science of Self-Organized Criticality (Copernicus, New York, 1996)

    Book  MATH  Google Scholar 

  6. T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, O. Shochet, Novel type of phase-transition in a system of self-driven particles. Phys. Rev. Lett. 75, 1226–1229 (1995)

    Article  MathSciNet  Google Scholar 

  7. I. Aoki, A simulation study on the schooling mechanism in fish. Bull. Jpn. Soc. Sci. Fish. 8, 1081–1088 (1982)

    Article  Google Scholar 

  8. H.J. Bussemaker, A. Deutsch, E. Geigant, Mean-field analysis of a dynamical phase transition in a cellular automaton model for collective motion. Phys. Rev. Lett. 78, 5018–5021 (1997)

    Article  Google Scholar 

  9. T. Vicsek, A. Zafeiris, Collective motion. Phys. Rep. 517, 71–140 (2012)

    Article  Google Scholar 

  10. A. Kudrolli, G. Lumay, D. Volfson, L.S. Tsimring, Swarming and swirling in self-propelled polar granular rods. Phys. Rev. Lett. 100, 058001 (2008)

    Article  Google Scholar 

  11. A. Kudrolli, Concentration dependent diffusion of self-propelled rods. Phys. Rev. Lett. 104, 088001 (2010)

    Article  Google Scholar 

  12. V. Narayan, N. Menon, S. Ramaswamy, Nonequilibrium steady states in a vibrated-rod monolayer: tetratic, nematic and smectic correlations. J. Stat. Mech.: Theory Exp. 2006, P01005 (2006)

    Google Scholar 

  13. V. Narayan, S. Ramaswamy, N. Menon, Long-lived giant number fluctuations in a swarming granular nematic. Science 317, 105–108 (2007)

    Article  Google Scholar 

  14. V. Schaller, C. Weber, C. Semmrich, E. Frey, A.R. Bausch, Polar patterns of driven filaments. Nature 467, 73–77 (2010)

    Article  Google Scholar 

  15. M. Ibele, T.E. Mallouk, A. Sen, Schooling behavior of light-powered autonomous micromotors in water. Angew. Chem. Int. Edn. 48, 3308–3312 (2009)

    Article  Google Scholar 

  16. A. Bricard, J.-B. Caussin, N. Desreumaux, O. Dauchot, D. Bartolo, Emergence of macroscopic directed motion in populations of motile colloids. Nature 503, 95–98 (2013)

    Article  Google Scholar 

  17. N.J. Suematsu, S. Nakata, A. Awazu, H. Nishimori, Collective behavior of inanimate boats. Phys. Rev. E 81(5), 056210 (2010)

    Article  Google Scholar 

  18. M. Rubenstein, A. Cornejo, R. Nagpal, Programmable self-assembly in a thousand-robot swarm. Science 345, 795–799 (2014)

    Article  Google Scholar 

  19. C.W. Reynolds, Flocks, herds, and schools: a distributed behavioral model. Comput. Graph. 21, 25–34 (1987)

    Article  Google Scholar 

  20. J. Krause, G.D. Ruxton, Living in Groups, Oxford Series in Ecology and Evolution (Oxford University Press, Oxford, 2002)

    Google Scholar 

  21. D.B. Dusenbery, Sensory Ecology: How Organisms Acquire and Respond to Information (W. H. Freeman and Co., New York, 1992)

    Google Scholar 

  22. D.J.T. Sumpter, The principles of collective animal behaviour. Philos. Trans. R. Soc. B 361, 5–22 (2006)

    Article  Google Scholar 

  23. C.K. Hemelrijk, H. Hildenbrandt, Schools of fish and flocks of birds: their shape and internal structure by self-organization. Interface Focus 2, 726–737 (2012)

    Article  Google Scholar 

  24. M. Ballerini, N. Cabibbo, R. Candelier, A. Cavagna, E. Cisbani, I. Giardina, V. Lecomte, A. Orlandi, G. Parisi, A. Procaccini, M. Viale, V. Zdravkovic, Interaction ruling animal collective behavior depends on topological rather than metric distance: evidence from a field study. Proc. Natl. Acad. Sci. USA 105, 1232–1237 (2008)

    Article  Google Scholar 

  25. F. Ginelli, H. Chaté, Relevance of metric-free interactions in flocking phenomena. Phys. Rev. Lett. 105, 168103 (2010)

    Article  Google Scholar 

  26. M. Moussaïd, D. Helbing, G. Theraulaz, How simple rules determine pedestrian behavior and crowd disasters. Proc. Natl. Acad. Sci. USA 108, 6884–6888 (2011)

    Article  Google Scholar 

  27. N.W.F. Bode, D.W. Franks, A.J. Wood, Limited interactions in flocks: relating model simulations to empirical data. J. R. Soc. Interface 8, 301–304 (2011)

    Article  Google Scholar 

  28. D. Croft, R. James, A. Ward, M. Botham, D. Mawdsley, J. Krause, Assortative interactions and social networks in fish. Oecologia 143, 211 (2005)

    Article  Google Scholar 

  29. A. Wood, Strategy selection under predation; evolutionary analysis of the emergence of cohesive aggregations. J. Theor. Biol. 264, 1102 (2010)

    Article  MathSciNet  Google Scholar 

  30. S. Coombs, J.C. Montgomery, The enigmatic lateral line system, in Comparative Hearing: Fish and Amphibians, Springer Handbook of Auditory Research, ed. by R.R. Fay, A.N. Popper (Springer, New York, 1999), pp. 319–362

    Chapter  Google Scholar 

  31. R. Bouffanais, G.D. Weymouth, D.K.P. Yue, Hydrodynamic object recognition using pressure sensing. Proc. R. Soc. A 467, 19–38 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. J. Emmerton, J. Delius, Beyond sensation: visual cognition in pigeons, in Brain Vision, Behavior in Birds, ed. by H. Zeigler, H.J. Bischof (MIT Press, Cambridge, 1993), pp. 377–390

    Google Scholar 

  33. Y. Shang, R. Bouffanais, Consensus reaching in swarms ruled by a hybrid metric-topological distance. Eur. Phys. J. B 87, 294 (2014)

    Article  MathSciNet  Google Scholar 

  34. M. Gell-Mann, The Quark and the Jaguar: Adventures in the Simple and the Complex (Henry Holt and Company, New York, 1996)

    MATH  Google Scholar 

  35. V. Mirabet, P. Auger, C. Lett, Spatial structures in simulations of animal grouping. Ecol. Model. 201, 468–476 (2007)

    Article  Google Scholar 

  36. F. Cucker, S. Smale, Emergent behavior in flocks. IEEE Trans. Autom. Control 52, 852–862 (2007)

    Article  MathSciNet  Google Scholar 

  37. D. Radakov, Schooling in the Ecology of Fish (Wiley, New York, 1973)

    Google Scholar 

  38. A. Attanasi, A. Cavagna, L. Del Castello, I. Giardina, S. Melillo et al., Collective behaviour without collective order in wild swarms of midges. PLoS Comput. Biol. 10, e1003697 (2014)

    Article  Google Scholar 

  39. A. Czirók, H.E. Stanley, T. Vicsek, Spontaneously ordered motion of self-propelled particles. J. Phys. A 30, 1375–1385 (1997)

    Article  Google Scholar 

  40. L. Barberis, E.V. Albano, Evidence of a robust universality class in the critical behavior of self-propelled agents: metric versus topological interactions. Phys. Rev. E 89, 012139 (2014)

    Article  Google Scholar 

  41. G. Grégoire, H. Chaté, Onset of collective and cohesive motion. Phys. Rev. Lett. 92, 025702 (2004)

    Article  Google Scholar 

  42. H. Chaté, F. Ginelli, G. Grégoire, F. Raynaud, Collective motion of self-propelled particles interacting without cohesion. Phys. Rev. E 77, 046113 (2008)

    Article  Google Scholar 

  43. A. Cavagna, A. Cimarelli, I. Giardina, G. Parisi, R. Santagati, F. Stefanini, M. Viale, Scale-free correlations in starling flocks. Proc. Natl. Acad. Sci. USA 107, 11865–11870 (2010)

    Article  Google Scholar 

  44. D. Mateo, Y.K. Kuan, R. Bouffanais, Excess of social behavior reduces the capacity to respond to perturbations. arXiv:1509.08157 [nlin.AO] (2015)

  45. N. Johnson, Simply Complexity (Oneworld Publications, Oxford, 2009)

    Google Scholar 

  46. A.S. Mikhailov, D. Zanette, Noise-induced breakdown of coherent collective motion in swarms. Phys. Rev. E 60, 4571–4575 (1999)

    Article  Google Scholar 

  47. R. Solé, Phase Transitions (Princeton University Press, Princeton, 2011)

    MATH  Google Scholar 

  48. M. Mitchell, Complexity: A Guided Tour (Oxford University Press, Oxford, 2009)

    MATH  Google Scholar 

  49. J. Holland, Emergence: From Chaos to Order (Basic Books, New York, 1998)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Bouffanais .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Bouffanais, R. (2016). A Physical Approach to Swarming. In: Design and Control of Swarm Dynamics. SpringerBriefs in Complexity. Springer, Singapore. https://doi.org/10.1007/978-981-287-751-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-287-751-2_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-287-750-5

  • Online ISBN: 978-981-287-751-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics