Skip to main content

Spinel MnCo2O4 and Spinel-Nanocarbon Hybrids as Bifunctional Catalysts for Alternating Oxygen Reduction and Evolution Reactions

  • Chapter
  • First Online:
Materials for Energy Infrastructure
  • 750 Accesses

Abstract

the bifunctional catalyst is one of the crucial components of rechargeable metal-air batteries, which should have good stability and high catalytic activity for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) during the discharging and charging processes, respectively. Herein, high-performance, non-precious metal-based hybrid bifunctional catalysts are developed from post-synthesis integration of spinel MnCo2O4 nanocrystals with nanocarbon materials. The hybrid catalysts exhibited comparable ORR activity and superior OER activity as compared to a commercial 30 wt.% Pt on carbon black (Pt/C). Rechargeable zinc-air batteries using these spinel-nanocarbon hybrid catalysts on cathode was successfully operated for 64 discharge-charge cycles (or 768 h equivalent), which significantly out-performed the Pt/C counterpart that could only survive up to 108 h under similar test conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arico AS, Bruce P, Scrosati B, Tarascon JM, van Schalkwijk W (2005) Nat Mater 4:366–377

    Article  Google Scholar 

  2. Cheng F, Chen J (2012) Chem Soc Rev 41:2172–2192

    Article  Google Scholar 

  3. Chen Z, Yu A, Higgins D, Li H, Chen Z (2012) Nano Lett 12:1946–1952

    Article  Google Scholar 

  4. Suntivich J, May KJ, Gasteiger HA, Goodenough JB, Shao-Horn Y (2011) Science 334:1383–1385

    Article  Google Scholar 

  5. Suntivich J, Gasteiger HA, Yabuuchi N, Nakanishi H, Goodenough JB, Shao-Horn Y (2011) Nat Chem 3:546–550

    Article  Google Scholar 

  6. Devadoss A, Sudhagar P, Das S, Lee SY, Terashima C, Nakata K, Fujishima A, Choi WB, Kang YS, Paik U, Appl ACS (2014) Mater Interfaces 6:4864–4871

    Article  Google Scholar 

  7. Bing Y, Liu H, Zhang L, Ghosh D, Zhang J (2010) Chem Soc Rev 39:2184–2202

    Article  Google Scholar 

  8. Gorlin Y, Jaramillo TF (2010) J Am Chem Soc 132:13612–13614

    Article  Google Scholar 

  9. Cheng F, Shen J, Peng B, Pan Y, Tao Z, Chen J (2011) Nat Chem 3:79–84

    Article  Google Scholar 

  10. Suntivich J, Perry E, Gasteiger H, Shao-Horn Y (2013) Electrocatalysis 4:49–55

    Article  Google Scholar 

  11. Cheng F, Zhang T, Zhang Y, Du J, Han X, Chen J (2013) Angew Chem Int Ed 52:2474–2477

    Article  Google Scholar 

  12. May KJ, Carlton CE, Stoerzinger KA, Risch M, Suntivich J, Lee YL, Grimaud A, Shao-Horn Y (2012) J Phys Chem Lett 3:3264–3270

    Article  Google Scholar 

  13. Han X, Zhang T, Du J, Cheng F, Chen J (2013) Chem Sci 4:368–376

    Article  Google Scholar 

  14. Li Y, Hasin P, Wu Y (2010) Adv Mater 22:1926–1929

    Article  Google Scholar 

  15. Fu XG, Jin JT, Liu YR, Wei ZY, Pan FP, Zhang JY, Appl ACS (2014) Mater Interfaces 6:3930–3936

    Article  Google Scholar 

  16. Liu MK, Song YF, He SX, Tjiu WW, Pan JS, Xia YY, Liu TX (2014) ACS Appl Mater Interfaces 6:4214–4222

    Google Scholar 

  17. Zhang B, Wen Z, Ci S, Mao S, Chen J, Appl ACS (2014) Mater Interfaces 6:7464–7470

    Article  Google Scholar 

  18. Wang H, Dai H (2013) Chem Soc Rev 42:3088–3113

    Article  Google Scholar 

  19. Bag S, Roy K, Gopinath CS, Raj CR, Appl ACS (2014) Mater Interfaces 6:2691–2698

    Article  Google Scholar 

  20. Liang Y, Li Y, Wang H, Zhou J, Wang J, Regier T, Dai H (2011) Nat Mater 10:780–786

    Article  Google Scholar 

  21. Liang Y, Wang H, Zhou J, Li Y, Wang J, Regier T, Dai H (2012) J Am Chem Soc 134:3517–3523

    Google Scholar 

  22. Lee DU, Kim BJ, Chen Z (2013) J Mater Chem A 1:4754–4762

    Article  Google Scholar 

  23. Li Y, Gong M, Liang Y, Feng J, Kim JE, Wang H, Hong G, Zhang B, Dai H (1805) Nat Commun 2013(4):1–7

    Google Scholar 

  24. Ning R, Tian JQ, Asiri AM, Qusti AH, Al-Youbi AO, Sun XP (2013) Langmuir 29:13146–13151

    Article  Google Scholar 

  25. Xiao J, Wan L, Wang X, Kuang Q, Dong S, Xiao F, Wang S (2014) J Mater Chem A 2:3794–3800

    Article  Google Scholar 

  26. Wang DD, Chen X, Evans DG, Yang WS (2013) Nanoscale 5:5312–5315

    Article  Google Scholar 

  27. Hu L, Zhong H, Zheng X, Huang Y, Zhang P, Chen Q (2012) Sci Rep 2(986):1–8

    Google Scholar 

  28. Li J, Xiong S, Li X, Tian Y (2013) Nanoscale 5:2045–2054

    Article  Google Scholar 

  29. Zhou L, Zhao D, Lou XW (2012) Double-Shelled CoMn2O4. Adv Mater 24:745–748

    Article  Google Scholar 

  30. Nissinen T, Valo T, Gasik M, Rantanen J, Lampinen M (2002) J Power Sources 106:109–115

    Article  Google Scholar 

  31. Liu HY, Zhu XF, Cheng MJ, Cong Y, Yang WS (2013) Int J Hydrogen Energy 38:1052–1057

    Article  Google Scholar 

  32. Yang WS, Hao JH, Zhang Z, Lu BP, Zhang BL, Tang JL (2014) Catal Commun 46:174–178

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoming Ge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Ge, X. (2016). Spinel MnCo2O4 and Spinel-Nanocarbon Hybrids as Bifunctional Catalysts for Alternating Oxygen Reduction and Evolution Reactions. In: Udomkichdecha, W., Mononukul, A., Böllinghaus, T., Lexow, J. (eds) Materials for Energy Infrastructure. Springer, Singapore. https://doi.org/10.1007/978-981-287-724-6_9

Download citation

Publish with us

Policies and ethics