Skip to main content

Microdefects Modeling in Germanium Single Crystals

  • Chapter
  • First Online:
Materials for Energy Infrastructure

Abstract

The knowledge of the dynamics of intrinsic point defects, is essential for controlling and engineering their formation and clustering and thus also the quality of the germanium crystals used for producing germanium wafers for space solar cells and terrestrial concentrator photovoltaic, as well as of the active layer of germanium in complementary metal-oxide semiconductors technology. The analyses presented in this paper relate technological process parameters with microdefect formation in single crystal germanium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The final values obtained from this fitting procedure cannot be reported in this paper because of confidentiality restrictions (the experimental data were supplied by Umicore Electro-Optic Materials).

References

  1. Pillarisetty R (2011) Nature 479:324

    Article  Google Scholar 

  2. King RR, Bushari D, Larrabee D, Liu X-Q, Rehder E, Edmondson K, Cotal H, Jones RK, Ermer JH, Fetzer CM, Law DC, Karam NH (2012) Prog Photovoltaics 20:801

    Article  Google Scholar 

  3. Vanhellemont J, Van Steenbergen J, Holsteyns F, Roussel P, Meuris M, Młynarczyk K, Śpiewak P, Geens W, Romandic I (2008) J Mater Sci: Mater Electron 19:24

    Google Scholar 

  4. Vanhellemont J, Śpiewak P, Sueoka K, Romandic I (2009) Phys Status Solidi C 6:1906

    Article  Google Scholar 

  5. Voronkov VV (1982) J Cryst Growth 59:625

    Article  Google Scholar 

  6. Voronkov VV, Falster R (1999) J Appl Phys 86:5975

    Article  Google Scholar 

  7. Sinno T, Dornberger E, von Ammon W, Brown RA, Dupret F (2000) Mater Sci Eng: R: Rep 28:149

    Article  Google Scholar 

  8. Kulkarni MS (2005) Ind Eng Chem Res 44:6246

    Article  Google Scholar 

  9. Mori T (2000) Ph.D. thesis, Massachusetts Institute of Technology

    Google Scholar 

  10. Kulkarni MS, Voronkov VV (2005) J Electrochem Soc 152:G781

    Article  Google Scholar 

  11. Kulkarni MS, Voronkov VV, Falster R (2004) J Electrochem Soc 151:G663

    Article  Google Scholar 

  12. Hüger E, Tietze U, Lott D, Bracht H, Bougeard D, Haller EE, Schmidt H (2008) Appl Phys Lett 93:162104

    Article  Google Scholar 

  13. Śpiewak P, Vanhellemont J, Kurzydłowski KJ (2011) J Appl Phys 110:063534

    Article  Google Scholar 

  14. P. Śpiewak, Ph.D. Thesis, Warsaw University of Technology (2009)

    Google Scholar 

  15. Kamiyama E, Sueoka K, Vanhellemont J (2013) ECS J Solid State Sci Technol 2:P104

    Article  Google Scholar 

  16. Tweet AG (1959) J Appl Phys 30:2002

    Article  Google Scholar 

Download references

Acknowledgments

This study has been carried out as an industry research project, partly sponsored by Umicore Electro-Optic Materials. We thank this company for its financial support and for its valuable input to research. Part of this research was financially supported by the Polish Ministry of Science and Higher Education under contract no. N507011 31/0315, by the European Space Agency under ESTEC contract no. 19633/06/NL/GLC and by the Institute for the Promotion of Innovation by Science and Technology in Flanders (IWT-Vlaanderen). Currently ongoing research in this field is possible thank to the Polish National Science Centre under contract no. 2012/05/E/ST8/03104.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Śpiewak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Śpiewak, P., Vanhellemont, J., Kurzydłowski, K.J. (2016). Microdefects Modeling in Germanium Single Crystals. In: Udomkichdecha, W., Mononukul, A., Böllinghaus, T., Lexow, J. (eds) Materials for Energy Infrastructure. Springer, Singapore. https://doi.org/10.1007/978-981-287-724-6_11

Download citation

Publish with us

Policies and ethics