Skip to main content

Measurement of Neutrino Oscillations

  • Chapter
  • First Online:
  • 446 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

This chapter describes the measurement of the neutrino oscillations in the T2K experiment. First, the measurements of the T2K neutrino beam at ND280 and Super-K are described. Then, the methods and results of the three-flavor neutrino oscillation analysis are reported.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Although the NC1\(\pi ^0\) events constitute only small percentages of the ND280 selected samples, the NC1\(\pi ^0\) normalization is constrained owing to the correlation between CC1\(\pi ^+\) and NC1\(\pi ^0\) interactions.

  2. 2.

    Further details about the Super-K event selection and reconstruction are found in Ashie et al. [7].

  3. 3.

    Cherenkov radiation threshold energies of electron, muon, pion and proton in water are 0.775, 160, 212 and 1423 MeV, respectively.

  4. 4.

    This \(\pi ^0\) rejection cut was developed in 2013. It removes 69 % of the \(\pi ^0\) background events relative to the previous \(\pi ^0\) rejection cut, with only a 2 % loss in signal efficiency.

  5. 5.

    The reason why the systematic error term is a function of the oscillation parameters as well as the nuisance parameters is described in the next section.

  6. 6.

    The critical limit for the 90 % C.L region for single degree of freedom is 2.71.

  7. 7.

    Prob3++ calculates oscillation probabilities based on the work of Barger et al. [16].

  8. 8.

    T2K’s \(\nu _\mu \rightarrow \nu _e\) observation is the first discovery of the neutrino appearance signal with more than 5\(\sigma \) significance although there are indications with less than 5\(\sigma \) significance by other experiments [18, 19].

  9. 9.

    Minor deviation of the best fit value of \(\sin ^2\theta _{23}\) from 0.5 is due to the secondary term of the \(\nu _\mu \rightarrow \nu _\mu \) oscillation probability formula (Eq. 1.11).

  10. 10.

    Minor deviation of the best fit value of \(\delta _{CP}\) from \(-\pi \)/2 is due to the solar term of the \(\nu _\mu \rightarrow \nu _e\) oscillation probability formula (Eq. 1.17).

References

  1. G. Fogli et al., Phys. Rev. D 84, 053007 (2011)

    Article  ADS  Google Scholar 

  2. F. An et al., (DAYA-BAY Collaboration), Chin. Phys. C 37, 011001 (2013)

    Google Scholar 

  3. J. Ahn et al., (RENO Collaboration), Phys. Rev. Lett. 108, 191802 (2012)

    Google Scholar 

  4. Y. Abe et al., (Double Chooz Collaboration), Phys. Rev. D 86, 052008 (2012)

    Google Scholar 

  5. K. Abe et al., (T2K Collaboration), Phys. Rev. Lett. 111, 211803 (2013)

    Google Scholar 

  6. K. Hagiwara, N. Okamura, K. Senda, arXiv:1107.5857

  7. Y. Ashie et al., (Super-Kamiokande Collaboration), Phys. Rev. D 71, 112005 (2005)

    Google Scholar 

  8. K. Abe et al., (T2K Collaboration), Phys. Rev. Lett. 107, 041801 (2011)

    Google Scholar 

  9. K. Abe et al., (T2K Collaboration), Phys. Rev. D 85, 031103 (2012)

    Google Scholar 

  10. K. Abe et al., (T2K Collaboration), Phys. Rev. D 88, 032002 (2013)

    Google Scholar 

  11. K. Abe et al., (T2K Collaboration) Phys. Rev. Lett. 112, 061802 (2014)

    Google Scholar 

  12. K. Abe et al., (T2K Collaboration), Phys. Rev. Lett. 112, 181801 (2014)

    Google Scholar 

  13. F. James, M. Roos, Comput. Phys. Commun. 10, 343 (1975)

    Article  ADS  Google Scholar 

  14. R. Brun, F. Rademakers, Nucl. Instrum. Methods A 389, 81 (1997)

    Article  ADS  Google Scholar 

  15. R. Wendell, http://www.phy.duke.edu/~raw22/public/Prob3++/ (2012)

  16. C. Barger et al., Phys. Rev. D 22, 2718 (1980)

    Article  ADS  Google Scholar 

  17. M. Friend, T. Kikawa, M. Ikeda, in The 26th International Conference on Neutrino Physics and Astrophysics (2014)

    Google Scholar 

  18. K. Abe et al., (Super-Kamiokande collaboration), Phys. Rev. Lett. 110, 181802 (2013)

    Google Scholar 

  19. N. Agafonova et al., (OPERA collaboration), Phys. Rev. D 89, 051102 (2014)

    Google Scholar 

  20. A. Himmel (Super-Kamiokande Collaboration), arXiv:1310.6677 (2013)

  21. P. Adamson et al., (MINOS Collaboration), arXiv:1403.0867 (2014)

  22. J. Beringer et al., (Particle Data Group), Phys. Rev. D 86, 010001 (2012) and 2013 partial update for the 2014 edition

    Google Scholar 

  23. G.J. Feldman, R.D. Cousins, Phys. Rev. D 57, 3873 (1998)

    Article  ADS  Google Scholar 

  24. P. Adamson et al., Phys. Rev. Lett. 110, 171801 (2013)

    Article  ADS  Google Scholar 

  25. J.H. Christenson, J.W. Cronin, V.L. Fitch, R. Turlay, Phys. Rev. Lett. 13, 138 (1964)

    Article  ADS  Google Scholar 

  26. B. Aubert et al., (BABAR collaboration), Phys. Rev. Lett. 86, 2515 (2001)

    Google Scholar 

  27. K. Abe et al., (Belle collaboration), Phys. Rev. Lett. 87, 091802 (2001)

    Google Scholar 

  28. G.C. Branco, L. Lavoura, J.P. Silva, CP Violation (Oxford University Press, Oxford, 1999)

    Google Scholar 

  29. I.I.Y. Bigi, A.I. Sanda, Phys. Nucl. Phys. Cosmol. 9, 1 (2000)

    Google Scholar 

  30. S. Pascoli, S.T. Petcov, A. Riotto, Phys. Rev. D 75, 083511 (2007)

    Article  ADS  Google Scholar 

  31. S. Pascoli, S.T. Petcov, A. Riotto, Nucl. Phys. B 774, 1 (2007)

    Article  ADS  Google Scholar 

  32. D.H. Perkins, P.F. Harrison, W.G. Scott, Phys. Rev. B 530, 167 (2002)

    Google Scholar 

  33. H. Murayama, L. Hall, N. Weiner, Phys. Rev. Lett. 84, 2572 (2000)

    Article  ADS  Google Scholar 

  34. D. Ayres et al., (NO\(\nu \)A Collaboration), Fermilab-Proposal-0929 (2005)

    Google Scholar 

  35. K. Abe et al., arXiv:1109.3262 (2011)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Kikawa, T. (2016). Measurement of Neutrino Oscillations. In: Measurement of Neutrino Interactions and Three Flavor Neutrino Oscillations in the T2K Experiment. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-287-715-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-287-715-4_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-287-714-7

  • Online ISBN: 978-981-287-715-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics