Skip to main content

Base-Catalyzed Reactions in Biomass Conversion: Reaction Mechanisms and Catalyst Deactivation

  • Chapter
Reaction Pathways and Mechanisms in Thermocatalytic Biomass Conversion I

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

Abstract

Although less studied than acid-catalyzed reactions, mainly because of their marginal interest in petrochemical processes, base-catalyzed reactions (either homogeneous or heterogeneous) play a key role in the upgrading of biomass-derived platform molecules. As in most of the chemical processes, the replacement of homogeneous catalysts by heterogeneous catalysts is of key interest. This article reviews the state of the art in the most important base-catalyzed reactions in the biofuel manufacture (biodiesel from triglycerides) and the upgrading of biomass-derived platform molecules (such as acetone, ethanol, furfural, 5-hydroxymethylfurfural, or acetic acid). Transesterification reactions, aldol condensation (alone or in combination with other reactions), and ketonization are the main reactions involved in these biorefinery processes. Reviewed are the most common catalysts proposed for these reactions (mainly heterogeneous), as well as the proposed mechanisms for these reactions, and the main factors governing catalyst deactivation when used in each of these reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass chemistry, catalyst and engineering. Chem Rev 106:4044–4098

    Article  CAS  Google Scholar 

  2. EIA (2014) World Energy Outlook. http://www.iea.org/w/bookshop/477-World_Energy_Outlook_2014. Accessed Nov 2014

  3. Corma A, de la Torre O, Renz M (2011) High-quality diesel from hexose-and pentose-derived biomass platform molecules. ChemSusChem 4:1574–1577

    Article  CAS  Google Scholar 

  4. Ma FR, Hanna MA (1999) Biodiesel production: a review. Bioresour Technol 70:1–15

    Article  CAS  Google Scholar 

  5. Canakci M, Van Gerpen J (2001) Biodiesel production from oils and fats with high free fatty acids. Trans ASAE 44:1429–1436

    Article  CAS  Google Scholar 

  6. Navjot K, Ali A (2014) One-pot transesterification and esterification of waste cooking oil via ethanolysis using Sr:Zr mixed oxide as solid catalyst. RSC Adv 4:43671–43681

    Article  CAS  Google Scholar 

  7. Tsai Y, Ling H, Lee M (2013) Biodiesel production with continuous supercritical process: non-catalytic transesterification and esterification with or without carbon dioxide. Bioresour Technol 145:362–369

    Article  CAS  Google Scholar 

  8. Thanh LT, Okitsu J, Maeda Y (2014) Ultrasound assisted production of fatty acid methyl esters from transesterification of triglycerides with methanol in the presence of KOH catalyst: optimization, mechanism and kinetics. Ultrason Sonochem 21:467–471

    Article  CAS  Google Scholar 

  9. Ghasemi M, Dehkordi AM (2014) Transesterification of waste cooking oil to biodiesel using KOH/gamma-Al2O3 catalyst in a new two-impinging-jets reactor. Ind Eng Chem Res 53:12238–12248

    Article  CAS  Google Scholar 

  10. Hoda N (2010) Optimization of biodiesel production from cottonseed oil by transesterification using NaOH and methanol. Energy Source Part A 32:434–441

    Article  CAS  Google Scholar 

  11. Boey PL, Maniam GP, Hamid SA (2011) Performance of calcium oxide as a heterogeneous catalyst in biodiesel production: a review. Chem Eng J 168:15–22

    Article  CAS  Google Scholar 

  12. Manríquez-Ramírez M, Gómez R, Hernández-Cortez JG, Zúñiga-Moreno A, Reza-San Germán C, Flores-Valle SO (2013) Advances in the transesterification of triglycerides to biodiesel using MgO-NaOH, MgO-KOH and MgO-CeO2 as solid basic catalysts. Catal Today 212:23–30

    Article  CAS  Google Scholar 

  13. Zabeti M, Wan M, Wan D (2009) Activity of solid catalysts for biodiesel production: a review. Fuel Process Technol 90:422–427

    Article  CAS  Google Scholar 

  14. Chouhan APS, Sarma AK (2011) Modern heterogeneous catalysts for biodiesel production: a comprehensive review. Renew Sustain Energy Rev 15:4378–4399

    Article  CAS  Google Scholar 

  15. Salamatinia B, Mootabadi J, Bhatia S, Abdullah AZ (2010) Optimization of ultrasonic-assisted heterogeneous biodiesel production from palm oil: a response surface methodology approach. Fuel Process Technol 91:441–448

    Article  CAS  Google Scholar 

  16. Dossin TF, Reyniers MF, Berger RJ, Marin GB (2006) Simulation of heterogeneously production. Appl Catal B 67:136–148

    Article  CAS  Google Scholar 

  17. Tateno T, Sasaki T (2004) Process for producing fatty acid fuels comprising fatty acids esters, Uni. State Patent 6818026, November 16

    Google Scholar 

  18. Veljkovic VB, Stamenkovic OS, Todorovic ZB, Lazic ML, Skala DU (2009) Kinetics of sunflower oil methanolysis catalyzed by calcium oxide. Fuel 88:554–562

    Article  CAS  Google Scholar 

  19. Boey PL, Maniam GP, Hamid SA (2009) Biodiesel production via transesterification of palm olein using waste mud crab shell as a heterogeneous catalyst. Bioresour Technol 100:6362–6368

    Article  CAS  Google Scholar 

  20. Viriya-empikul N, Krasae P, Puttasawat B, Yoosuk B, Chollacoop N, Faung-Nawakij K (2010) Waste shells of mollusk and egg as biodiesel production catalysts. Bioresour Technol 101:3765–3767

    Article  CAS  Google Scholar 

  21. Lam MK, Lee KT, Mohamed AR (2010) Homogeneous, heterogeneous and enzymatic catalysts for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: a review. Biotechnol Adv 28:500–518

    Article  CAS  Google Scholar 

  22. Vujicic DJ, Comic D, Zarubica A, Micic R, Boskovic G (2010) Kinetics of biodiesel synthesis from sunflower oil over CaO heterogeneous catalyst. Fuel 89:2054–2061

    Article  CAS  Google Scholar 

  23. Ilgen O (2011) Dolomite as a heterogeneous catalyst for transesterification of canola oil. Fuel Process Technol 92:452–455

    Article  CAS  Google Scholar 

  24. Liu Y, Lotero E, Goodwin JG (2006) Effect of carbon chain length on esterification of carboxylic acids with methanol using acid catalysis. J Catal 243:221–228

    Article  CAS  Google Scholar 

  25. Encinar JM, González JF, Pardal A, Martínez G (2010) Rape oil transesterification over heterogeneous catalysts. Fuel Process Technol 91:1530–1536

    Article  CAS  Google Scholar 

  26. Liu R, Wnag X, Zhao X, Feng P (2006) Sulfonated ordered mesoporous carbon for catalytic preparation of biodiesel. Carbon 310:48–53

    Google Scholar 

  27. Grandos ML, Poves MD, Alonso D, Mariscal R, Galisteo FC, Moreno-Tost R (2007) Biodiesel from sunflower oil by using activated calcium oxide. Appl Catal B 73:317–326

    Article  CAS  Google Scholar 

  28. Mootabadi H, Salamatinia B, Bhatia S, Abdullah AZ (2010) Ultrasonic-assisted biodiesel production process from palm oil using alkaline earth metal oxides as the heterogeneous catalysts. Fuel 89:1818–1825

    Article  CAS  Google Scholar 

  29. Yoo SJ, Lee HS, Bambang V, Kim J, Kim JD, Lee YW (2010) Synthesis of biodiesel from rapeseed oil using supercritical methanol with metal oxide catalysts. Bioresour Technol 101:8686–8689

    Article  CAS  Google Scholar 

  30. Silva RB, Lima AF, Santos SS, Oliveira JR, Chaves MH, Santos JR (2008) Catalysts of Cu(II) and Co(II) ions adsorbed in chitosan used in transesterification of soy bean and babassu oils – a new route for biodiesel syntheses. Bioresour Technol 99:6793–6798

    Article  CAS  Google Scholar 

  31. Brito YC, Mello VM, Cesar C, Macedo CS, Meneghetti MR, Suárez AZ (2006) Fatty acid methyl esters preparation in the presence of maltolate and n-butoxide Ti(IV) and Zr(IV) complexes. Appl Catal A 351:24–28

    Article  CAS  Google Scholar 

  32. Rashtizadeh E, Farzaneh F, Ghandi M (2010) A comparative study of KOH loaded on double aluminosilicate layers, microporous and mesoporous materials as catalyst for biodiesel production via transesterification of soybean oil. Fuel 89:3393–3398

    Article  CAS  Google Scholar 

  33. Jin L, Zhang Y, Dombrowski JP, Chen CH, Pravatas A, Xy L, Perkins C, Suib SL (2011) ZnO/La2O2CO3 layered composite: a new heterogeneous catalyst for the efficient ultra-fast microwave biofuel production. App Catal B 103:200–205

    Article  CAS  Google Scholar 

  34. Kouzu M, Hidaka J (2012) Transesterification of vegetable oil into biodiesel catalyzed by CaO: A review. Fuel 93:1–12

    Article  CAS  Google Scholar 

  35. Kouzu M, Kasuno T, Tajika M, Yamanaka S, Hidaka J (2008) Active phase of calcium oxide used as solid base catalyst for transesterification of soybean oil with refluxing methanol. Appl Catal A 334:357–365

    Article  CAS  Google Scholar 

  36. Almerindo GI, Probst LFD, Campos CEM, Almeida RM, Meneghetti SMP, Meneghetti MR, Clacens JM, Fajardo HV (2011) Magnesium oxide prepared via metal-chitosan complexation method: application as catalyst for transesterification of soybean oil and catalyst deactivation studies. J Power Sources 196:8057–8063

    Article  CAS  Google Scholar 

  37. Choedkiatsakul I, Ngaosuwan K, Assabumrungrat S (2013) Application of heterogeneous catalysts for transesterification of refined palm oil in ultrasound-assisted reactor. Fuel Process Technol 111:22–28

    Article  CAS  Google Scholar 

  38. Chantrasa A, Phlernjai N, Goodwin JG (2011) Kinetics of hydrotalcite catalyzed transesterification of tricaprylin and methanol for biodiesel synthesis. Chem Eng J 168:333–340

    Article  CAS  Google Scholar 

  39. Lee S, Varma A (2013) Kinetic study of biphasic aldol condensation of n-butyraldehyde using stirred cell. Chem Eng Sci 140:619–629

    Article  CAS  Google Scholar 

  40. Hanna DG, Shylesh S, Li Y, Krishna S, Head-Gordon M, Bell AT (2014) Experimental and theoretical study of n-butanal self-condensation over Ti species supported on silica. ACS Catal 4:2908–2916

    Article  CAS  Google Scholar 

  41. Yadav GP, Aduri P (2012) Aldol condensation of benzaldehyde with heptanal to jasminaldehyde over novel Mg-Al mixed oxide on hexagonal mesoporous silica. J Mol Catal A 355:142–154

    Article  CAS  Google Scholar 

  42. Foo SW, Oishi S, Saito S (2012) Aldol condensation of amides using phosphazene-based catalysis. Tetrahedron Lett 53:5445–5448

    Article  CAS  Google Scholar 

  43. Abelló S, Dhir S, Colet G, Pérez-Ramírez J (2007) Accelerated study of the citral-acetone condensation kinetics over activated Mg-Al hydrotalcite. Appl Catal A 325:121–129

    Article  CAS  Google Scholar 

  44. Raju V, Radhakrishnana R, Jaenicke S, Chuah GK (2011) KF on γ-alumina: an efficient catalyst for the aldol condensation to pseudoionones. Catal Today 164:139–142

    Article  CAS  Google Scholar 

  45. Huber GW, Chheda JN, Barret CJ, Dumesic JA (2005) Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates. Science 308:1446–1450

    Article  CAS  Google Scholar 

  46. Sifniades S, Levy AB (2002) Acetone Ullmann’s encyclopedia of industrial chemistry, 6th edn. Wiley-VCh, New York

    Google Scholar 

  47. Qureshi N, Ezeji TC (2008) Butanol, “a superior biofuel” production from agricultural residues (renewable biomass): recent progress in technology. Biofuels Bioprod Biorefin 2:319–330

    Article  CAS  Google Scholar 

  48. Mansur D, Yoshikawa T, Norinaga K, Hayashi J, Tago T, Masuda T (2013) Production of ketones from pyroligneous acid of woody biomass pyrolysis over an iron-oxide catalyst. Fuel 103:130–134

    Article  CAS  Google Scholar 

  49. Bej SK, Thompson LT (2004) Acetone condensation over molybdenum nitride and carbide catalysts. Appl Catal A 264:141–150

    Article  CAS  Google Scholar 

  50. Weissermel K, Arpe HJ (1997) Industrial organic chemistry, 3rd ed. Wiley New York (USA)

    Google Scholar 

  51. Salvapati GS, Ramanamurty KV, Janardanarao M (1989) Selective catalytic self-condensation of acetone. J Molec Catal 54:9–30

    Article  CAS  Google Scholar 

  52. Kikhtyanin O, Kubicka D, Cejka J (2015) Toward understanding of the role of Lewis acidity in aldol condensation of acetone and furfural using MOF and zeolite catalysts. Catal Today 243:158–162

    Article  CAS  Google Scholar 

  53. Ordóñez S, Díaz E, León M, Faba L (2011) Hydrotalcite-derived mixed oxides as catalysts for different C-C bond formation reactions from bioorganic materials. Catal Today 167:71–76

    Article  CAS  Google Scholar 

  54. Kustrowski P, Sulkowska D, Chmielarz L, Rafalska A, Dudk B, Dziembaj R (2005) Influence of thermal treatment conditions on the activity of hydrotalcite derived Mg-Al oxides in the aldol condensation of acetone. Microporous Mesoporous Mater 78:11–22

    Article  CAS  Google Scholar 

  55. Podrebarac GG, Ng FTT, Rempel GL (1997) A kinetic study of the aldol condensation of acetone using an anion exchange resin catalyst. Chem Eng Sci 52:2991–3002

    Article  CAS  Google Scholar 

  56. Tichit D, Bennani MN, Figueras F, Tessier R, Kervennal J (1998) Aldol condensation of acetone over layered double hydroxides of the meixnerite type. Appl Clay Sci 13:401–415

    Article  CAS  Google Scholar 

  57. Zhang G, Hattori H, Tanabe K (1988) Aldol addition of acetone, catalyzed by solid base catalysts: magnesium oxide, calcium oxide, strontium oxide, barium oxide, lanthanum (IIII) oxide and zirconium oxide. Appl Catal A 382:272–276

    Google Scholar 

  58. Cota I, Ramírez E, Medina F, Sueiras JE, Layrac G, Tichit D (2010) Highly basic catalysts obtained by intercalation of La-containing anionic complexes in layered doublé hydroxides. Appl Catal A 382:272–276

    Article  CAS  Google Scholar 

  59. Wang Z, Fongarland P, Lu G, Essayem N (2014) Reconstructed La-, Y-Ce-modified MgAl-hydrotalcite as a solid base catalyst for aldol condensation: investigation of water tolerance. J Catal 318:108–118

    Article  CAS  Google Scholar 

  60. Gao J, Teplyakov AV (2014) Chemical transformations of acetone on ZnO powder. J Catal 319:136–141

    Article  CAS  Google Scholar 

  61. Faba L, Díaz E, Ordóñez S (2012) Aqueous-phase furfural-acetone aldol condensation over basic mixed oxides. Appl Catal B 113–114:201–211

    Article  CAS  Google Scholar 

  62. Lu Z, Zhang F, Lei X, Yang L, Xu S, Duan X (2008) In situ growth of layered double hydroxide films on anodic aluminum oxide/aluminum and its catalytic feature in aldol condensation of acetone. Chem Eng Sci 63:4055–4062

    Article  CAS  Google Scholar 

  63. Huang C, Ng FTT, Rempel GL (2000) Application of catalytic distillation for the aldol condensation of acetone: the effect of the mass transfer and kinetic rates on the yield and selectivity. Chem Eng Sci 55:5919–5931

    Article  CAS  Google Scholar 

  64. Di Cosimo JI, Díez VK, Apesteguía CR (1996) Base catalysis for the synthesis of α, β-unsaturated ketones from the vapor-phase aldol condensation of acetone. Appl Catal A 137:149–166

    Article  Google Scholar 

  65. León M, Faba L, Díaz E, Bennici S, Vega A, Ordóñez S, Auroux A (2014) Consequences of MgO activation procedures on its catalytic performance for acetone self-condensation. Appl Catal B 147:796–804

    Article  CAS  Google Scholar 

  66. Faba L, Díaz E, Ordóñez S (2013) Gas phase acetone self-condensation over unsupported and supported Mg-Zr mixed-oxides catalysts. Appl Catal B 142–143:387–395

    Article  CAS  Google Scholar 

  67. Li Z, Xi W, Lu C (2015) Hydrotalcite-assisted cataluminescence: a new approach for sensing mesityl oxide in aldol condensation of acetone. Sensor Actuat B-Chem 207:598–503

    Google Scholar 

  68. Krivtsov I, Faba L, Díaz E, Ordóñez S, Avdin V, Khainakov S, García JR (2014) A new peroxo-route for the synthesis of Mg-Zr mixed oxides catalysts: application in the gas phase acetone self-condensation. Appl Catal A 477:26–33

    Article  CAS  Google Scholar 

  69. Zamora M, López T, Gómez R, Asomoza M, Meléndrez R (2005) Acetone gas phase condensation of alkaline metals doped TiO2 sol-gel catalysts. Appl Surf Sci 252:828–832

    Article  CAS  Google Scholar 

  70. Zamora M, López T, Gómez R, Asomoza M, Meléndrez R (2005) Oligomerization of acetone over titania-doped catalysts (Li, Na, K and Cs): effect of the alkaline metal in activity and selectivity. Catal Today 107–108:289–293

    Article  CAS  Google Scholar 

  71. Zamora M, López T, Asomoza M, Meléndrez R, Gómez R (2006) Alkaline doped TiO2 sol-gel catalysts: Effect of sintering on catalyst activity and selectivity for acetone condensation. Catal Today 116:234–238

    Article  CAS  Google Scholar 

  72. Torok DS, Scott WJ (1993) Thermal conversion of phorone into isophorone via (trimethylsilyl)oxyhexatriene (soh) cyclization. Tetrahedron Lett 34:3067–3070

    Article  CAS  Google Scholar 

  73. Kumar VS, Nagaraja BM, Shashikala V, Seetharamulu P, Padmasri AH, Raju BD, Rao KSR (2004) Role of acidic and basic sites of Al2O3 in predicting the reaction pathway of isophorone transformation. J Mol Catal A 223:283–288

    Article  CAS  Google Scholar 

  74. Di Cosimo JI, Apesteguía CR (1998) Study of the catalyst deactivation in the base-catalyzed oligomerization of acetone. J Mol Catal 130:177–185

    Article  Google Scholar 

  75. Diez VK, Apesteguía CR, Di Cosimo JI (2001) Deactivation of MgyAlOx mixed oxides during aldol condensation reactions of ketones. Stud Surf Sci Catal 139:303–310

    Article  CAS  Google Scholar 

  76. Sugi Y, Matsuzaki T, Hanaoka T, Takeuchi K, Tokoro T, Takeuchi G (1991) Alkylation of biphenyl catalyzed by zeolites. Stud Surf Sci Catal 60:303–310

    Article  CAS  Google Scholar 

  77. Talwalkar S, Mahajani S (2006) Synthesis of methyl isobutyl ketone from acetone over metal-doped ion exchange resin catalyst. Appl Catal A 302:140–148

    Article  CAS  Google Scholar 

  78. Prinetto F, Tichit D, Teissier R, Coq B (2000) Mg- and Ni-containing layered double hydroxides as soda substitutes in the aldol condensation of acetone. Catal Today 55:103–116

    Article  CAS  Google Scholar 

  79. Abelló S, Vijaya-Shankar D, Pérez-Ramírez J (2008) Stability, reutilization and scalability of activated hydrotalcites in aldol condensation. Appl Catal A 342:119–125

    Article  CAS  Google Scholar 

  80. Winter F, Koot V, Jos van Dillen A, Geus JW, de Jong KP (2005) Hydrotalcites supported on carbon nanofibers as solid base catalysts for the synthesis of MIBK. J Catal 236:91–100

    Article  CAS  Google Scholar 

  81. Rekoske JE, Barteau MA (2011) Kinetics, selectivity and deactivation in the aldol condensation of acetaldehyde on anatase titanium dioxide. Ind Eng Chem 50:41–51

    Article  CAS  Google Scholar 

  82. Davis RJ (2013) Heterogeneous catalysts for the Guerbet coupling of alcohols. ACS Catal 3:1588–1600

    Article  CAS  Google Scholar 

  83. Angelici C, Weckhuysen BM, Bruijnincx PCA (2013) Chemocatalytic conversion of ethanol into butadiene and other bulk chemicals. ChemSusChem 6:1595–1614

    Article  CAS  Google Scholar 

  84. Marcu IC, Tanchoux N, Fajula F, Tichit D (2013) Catalytic conversion of ethanol into butanol over M-Mg-Al mixed oxide catalysts (M= Pd, Ag, Mn, Fe, Cu, Sm, Yb) obtained from LDH precursors. Catal Lett 143:23–30

    Article  CAS  Google Scholar 

  85. Makshina EV, Dusselier M, Janssens W, Degrève J, Jacobs PA, Sels BF (2014) Review of old chemistry and new catalytic advances in the on-purpose synthesis of butadiene. Chem Soc Rev 43:7913–7953

    Article  Google Scholar 

  86. León M, Diaz E, Ordóñez S (2011) Ethanol catalytic condensation over Mg-Al mixed oxides derived from hydrotalcites. Catal Today 164:436–442

    Article  CAS  Google Scholar 

  87. Tsuchida T, Kubo J, Yoshioka T, Sakuma S, Takeguchi T, Ueda W (2008) Reaction of ethanol over hydroxyapatite affected by Ca/P ratio of catalyst. J Catal 259:183–189

    Article  CAS  Google Scholar 

  88. Di Cosimo JI, Díez VK, Xu M, Iglesia E, Apesteguía CR (1998) Structure and surface and catalytic properties of Mg-Al basic oxides. J Catal 178:499–510

    Article  Google Scholar 

  89. Birky TW, Kozlowski JT, Davis RJ (2013) Isotopic transient analysis of the ethanol coupling reaction over magnesia. J Catal 298:130–137

    Article  CAS  Google Scholar 

  90. Kozlowski JT, Behrens M, Schlögl R, Davis RJ (2013) Influence of the precipitation method on acid-base-catalyzed reactions over Mg-Zr mixed oxides. ChemCatChem 5:1989–1997

    Article  CAS  Google Scholar 

  91. Ndou AS, Plint N, Coville NJ (2003) Dimerisation of ethanol to butanol over solid-base catalysts. Appl Catal A 251:337–345

    Article  CAS  Google Scholar 

  92. Ueda W, Kuwabara T, Ohshida T, Morikawa Y (1990) A low-pressure Guerbet reaction over magnesium oxide catalyst. J Chem Soc Chem Commun 22:1558–1559

    Article  Google Scholar 

  93. Di Cosimo JI, Apesteguía CR, Ginés MJL, Iglesia E (2000) Structural requirements and reaction pathways in condensation reactions of alcohol son MgyAlOx catalysts. J Catal 290:261–275

    Article  CAS  Google Scholar 

  94. Kozlowski JT, Davis RJ (2013) Sodium modification of zirconia catalysts for ethanol coupling to 1-butanol. J Energy Chem 22:58–64

    Article  CAS  Google Scholar 

  95. Ordomsky VV, Sushkevich VL, Ivanova II (2010) Study of acetaldehyde condensation chemistry over magnesia and zirconia supported on silica. J Mol Catal A 333:85–93

    Article  CAS  Google Scholar 

  96. Ogo S, Onda A, Iwasa Y, Hara K, Fukuoka A, Yanagisawa K (2012) 1-butanol synthesis from ethanol over strontium phosphate hydroxyapatite catalysts with various Sr/P ratios. J Catal 296:24–30

    Article  CAS  Google Scholar 

  97. Ogo S, Onda A, Yanagisawa K (2011) Selective synthesis of 1-butanol from ethanol over strontium phosphate hydroxyapatite catalysts. Appl Catal A 402:188–195

    Article  CAS  Google Scholar 

  98. Gines MJL, Iglesia E (1998) Bifunctional condensation reactions of alcohol son basic oxides modified by copper and potassium. J Catal 176:155–172

    Article  CAS  Google Scholar 

  99. Di Cosimo JI, Acosta A, Apesteguía CR (2004) Gas-phase hydrogen transfer reduction of α, β-unsaturated ketones on Mg-based catalysts. J Mol Catal A 222:87–96

    Article  CAS  Google Scholar 

  100. Yang C, Meng ZY (1993) Bimolecular condensation of ethanol to 1-butanol catalyzed by alkali cation zeolites. J Catal 142:37–44

    Article  CAS  Google Scholar 

  101. Ndou AS, Coville NJ (2004) Self-condensation of propanol over solid-base catalysts. Appl Catal A 275:103–110

    Article  CAS  Google Scholar 

  102. Carlini C, Flego C, Marchionna M, Noviello M, Galletti AMR, Sbrana G, Basile F, Vaccari A (2004) Guerbet condensation of methanol with n-propanol to isobutyl alcohol over heterogeneous copper chromite/Mg-Al mixed oxides catalysts. J Mol Catal A 220:215–220

    Article  CAS  Google Scholar 

  103. Ramasamy KK, Wang Y (2014) Ethanol conversion to hydrocarbons on HZSM-5: effect of reaction conditions and Si/Al ratio on the product distributions. Catal Today 237:89–99

    Article  CAS  Google Scholar 

  104. Lamminpää K, Ahola J, Tanskanen J (2015) Acid-catalysed xylose dehydration into furfural in the presence of kraft lignin. Bioresour Technol 177:94–101

    Article  CAS  Google Scholar 

  105. Alonso DM, Bond JQ, Dumesic JA (2010) Catalytic conversion of biomass to biofuels. Green Chem 12:1493–1513

    Article  CAS  Google Scholar 

  106. West RM, Liu ZY, Peter M, Dumesic JA (2008) Liquid alkanes with targeted molecular weights from biomass-derived carbohydrates. ChemSusChem 1:417–424

    Article  CAS  Google Scholar 

  107. Amarasekara AS, Singh TB, Larkin E, Hasan MA, Fan HJ (2015) NaOH catalyse condensation reactions between levulinic acid and biomass derive furan-aldehydes in water. Ind Crop Prod 65:546–54910.1016/j.indcrop.2014.10.005

    Google Scholar 

  108. West RM, Liu ZY, Peter M, Gärtner CA, Dumesic JA (2008) Carbon-carbon bond formation for biomass-derived furfurals and ketones by aldol condensation in a biphasic system. J Mol Catal 296:18–27

    Article  CAS  Google Scholar 

  109. James OO, Maity S, Usman LA, Ajanaku KO, Jani OO, Siyanbola TO, Sahu S, Chaubey R (2010) Towards the conversion of carbohydrate biomass feedstocks to biofuels via hydroxymethylfurfural. Energy Environ Sci 3:1833–1850

    Article  CAS  Google Scholar 

  110. Kikhtyanin O, Kelbichová V, Vitvarová D, Kubu M, Kubicka D (2014) Aldol condensation of furfural and acetone on zeolites. Catal Today 227:154–162

    Article  CAS  Google Scholar 

  111. Kikhtyanin O, Kubicka D, Cejka J (2015) Toward understanding of the role of Lewis acidity in aldol condensation of acetone and furfural using MOF and zeolite catalysts. Catal Today 243:158–16210.1016/j.cattod.2014.08.016

    Google Scholar 

  112. Agirrezabal-Telleria I, Gandarias PL (2014) Heterogeneous acid-catalysts for the production of furan-derived compounds (furfural and hydroxymethylfurfural) from renewable carbohydrates: a review. Catal Today 234:42–58

    Article  CAS  Google Scholar 

  113. Faba L, Díaz E, Ordóñez S (2013) Improvement of the stability of basic mixed oxides used as catalysts for aldol condensation of bio-derived compounds by palladium addition. Biomass Bioenergy 56:592–599

    Article  CAS  Google Scholar 

  114. Xing R, Subrahmanyam AV, Olcay H, Qi W, van Walsu GP, Pendse H, Huber GW (2010) Production of jet and diesel fuel range alkanes from waste hemicellulose-derived aqueous solutions. Green Chem 12:1933–1946

    Article  CAS  Google Scholar 

  115. Hora L, Kikhtyanin O, Capek L, Bortnovskiy O, Kubicka D (2015) Comparative study of physico-chemical properties of laboratory and industrially prepared layered double hydroxides and their behavior in aldol condensation of furfural and acetone. Catal Today 241:221–230

    Article  CAS  Google Scholar 

  116. Hora L, Kelbichova V, Kikhtyanin O, Bortnovskiy O, Kubicka D (2014) Aldol condensation of furfural and acetone over Mg-Al layered double hydroxides and mixed oxides. Catal Today 223:138–147

    Article  CAS  Google Scholar 

  117. Kikhtyanin O, Hora L, Kubicka D (2015) Unprecedented selectivities in aldol condensation over Mg-Al hydrotalcite in a fixed be reactor setup. Catal Commun 58:89–92

    Article  CAS  Google Scholar 

  118. Huang X, Zhang Q, Wang T, Liu Q, Ma L, Zhang Q (2012) Production of jet fuel intermediates from furfural and acetone by aldol condensation over MgO/NaY. J Fuel Chem Technol 40:973–978

    Article  CAS  Google Scholar 

  119. Shen W, Tompsett GA, Hammond KD, Xing R, Dogan F, Grey CD, Conner C, Auerbach SM, Huber GW (2011) Liquid phase aldol condensation reactions with MgO-ZrO2 and shape-selective nitrogen-substituted NaY. Appl Catal A 392:57–68

    Article  CAS  Google Scholar 

  120. Sádaba I, Ojeda M, Mariscal R, Fierro JLG, López Granados M (2011) Catalytic and structural properties of co-precipitated Mg-Zr mixed oxides for furfural valorization via aqueous aldol condensation with acetone. Appl Catal B 101:638–648

    Article  CAS  Google Scholar 

  121. Sádaba I, Ojeda M, Mariscal R, Richards R, López Granados M (2011) Mg-Zr mixed oxides for aqueous aldol condensation of furfural with acetone: Effect of preparation method and activation temperature. Catal Today 167:77–83

    Article  CAS  Google Scholar 

  122. Faba L, Díaz E, Ordóñez S (2013) Improvement on the catalytic performance of Mg-Zr mixed oxides for furfural-acetone aldol condensation by supporting on mesoporous carbons. ChemSusChem 6:463–473

    Article  CAS  Google Scholar 

  123. Díaz E, Ordóñez S, Bueres RF, Asedegbega-Nieto E, Sastre H (2010) High-surface área graphites as supports for hydrodechlorination catalysts: tuning support surface chemistry for an optimal performance. Appl Catal B 99:181–190

    Article  CAS  Google Scholar 

  124. Xu W, Liu X, Ren J, Zhang P, Whang Y, Guo Y, Guo Y, Lu G (2010) A novel mesoporous Pd/cobalt aluminate bifunctional catalyst for aldol condensation and following hydrogenation. Catal Commun 11:721–726

    Article  CAS  Google Scholar 

  125. Xu W, Liu X, Ren J, Liu H, Ma Y, Wang Y, Lu G (2011) Synthesis of nanosized mesoporous Co-Al spinel and its application as solid base catalyst. Microporous Mesoporous Mater 142:251–257

    Article  CAS  Google Scholar 

  126. O’Neill RE, Vanoye L, De Bellefon C, Aiouache F (2014) Aldol-condensation of furfural by activated dolomite catalyst. Appl Catal B 144:46–56

    Article  CAS  Google Scholar 

  127. Wang Q, Varela V, Ghosh A, Yeu S, Lunn JD, Shantz DF (2010) Catalytic properties of Dendron-OMS hybrids. J Catal 269:15–25

    Article  CAS  Google Scholar 

  128. Chheda JN, Dumesic JA (2007) An overview of dehydration, aldol-condensation and hydrogenation processes for production of liquid alkanes from biomass-derived carbohydrates. Catal Today 123:59–70

    Article  CAS  Google Scholar 

  129. Díez VK, Apesteguía CR, Di Cosimo JI (2006) Aldol condensation of citral with acetone on MgO and alkali-promoted MgO catalysts. J Catal 240:235–244

    Article  CAS  Google Scholar 

  130. Chen S, Yang H, Hu C (2015) Theoretical study on the reaction mechanisms of the aldol-condensation of 5-hydroxymethylfurfural with acetone catalysed by MgO and MgO+. Catal Today 245:100–10710.1016/j.cattod.2014.05.004

    Google Scholar 

  131. Fakhfakh N, Cognet P, Cabassud M, Lucchese Y, Días de los Ríos M (2008) Stoichio-kinetic modeling and optimization of chemical synthesis: application to the aldolic condensation of furfural on acetone. Chem Eng Process 47:349–362

    Article  CAS  Google Scholar 

  132. Abelló S, Medina F, Tichit D, Pérez-Ramírez J, Sueiras JE, Salagre P, Cesteros Y (2007) Aldol condensation of campholenic aldehyde and MEK over actívate hydrotalcites. Appl Catal B 70:577–584

    Article  CAS  Google Scholar 

  133. Faba L, Díaz E, Ordóñez S (2011) Performance of bifunctional Pd/MxNyO (M=Mg, Ca, N=Zr, Al) catalysts for aldolization-hydrogenation of furfural-acetone mixtures. Catal Today 164:451–456

    Article  CAS  Google Scholar 

  134. Renz M (2005) Ketonization of carboxylic acids by decarboxylation: mechanism and scope. Eur J Org Chem 2005:979–988

    Article  CAS  Google Scholar 

  135. Mekhemer GAH, Halawy SA, Mohamed MA, Zaki MI (2005) Ketonization of acetic acid vapour over polycrystalline magnesia: in situ Fourier transform infrared spectroscopy and kinetic studies. J Catal 230:109–122

    Article  CAS  Google Scholar 

  136. Pham TN, Shi D, Sooknoi T, Resasco DE (2012) Aqueous-phase ketonization of acetic acid over Ru/TiO2/carbon catalysts. J Catal 295:169–178

    Article  CAS  Google Scholar 

  137. Hasan MA, Zaki MI, Pasupulety L (2003) Oxide-catalyzed conversion of acetic acid into acetone: and FTIR spectroscopic investigation. Appl Catal A 243:81–92

    Article  CAS  Google Scholar 

  138. Phung TK, Casazza AA, Aliakbarian B, Finocchio E, Perego P, Busca G (2013) Catalytic conversion of ethyl acetate and acetic acid on alumina as models of vegetable oils conversion to biofuels. Chem Eng J 215:838–848

    Article  CAS  Google Scholar 

  139. Yang X, Chatterjee S, Zhang Z, Zhu X, Pittman CU (2010) Reactions of phenol, water, acetic acid, methanol, and 2-hydroxymethylfuran with olefins as models for bio-oil upgrading. Ind Eng Chem Res 49:2003–2013

    Article  CAS  Google Scholar 

  140. Pham TN, Sooknoi T, Crossley SP, Resasco DE (2013) Ketonization of carboxylic acids: mechanisms, catalysts, and implications for biomass conversion. ACS Catal 3:2456–2473

    Article  CAS  Google Scholar 

  141. Snell RW, Shanks BH (2013) Ceria calcination temperature influence on acetic acid ketonization: mechanistic insights. Appl Catal A 451:86–93

    Article  CAS  Google Scholar 

  142. Martinez R, Huff MC, Barteau MA (2004) Ketonization of acetic acid on titania-functionalized silica monoliths. J Catal 222:404–409

    Article  CAS  Google Scholar 

  143. Pham TN, Shi D, Resasco DE (2014) Reaction kinetics and mechanism of ketonization of aliphatic carboxylic acids with different carbon chain lengths over Ru/TiO2 catalyst. J Catal 314:149–158

    Article  CAS  Google Scholar 

  144. Pestman R, Koster RM, Duijne A, Pieterse JAZ, Ponec V (1997) Reactions of carboxylic acids on oxides: 2. Bimolecular reaction of aliphatic acids to ketones. J Catal 168:265–272

    Article  CAS  Google Scholar 

  145. Diebold U (2003) The surface science of titanium dioxide. Surf Sci Rep 48:53–229

    Article  CAS  Google Scholar 

  146. Yamada Y, Segawa M, Sato F, Kojima T, Sato S (2011) Catalytic performance of rare earth oxides in ketonization of acetic acid. J Mol Catal A 346:79–86

    Article  CAS  Google Scholar 

  147. Kuriacose JC, Jewur SS (1977) Studies on the surface interaction of acetic acid on iron oxide. J Catal 50:330–341

    Article  CAS  Google Scholar 

  148. Snell RW, Shanks BH (2013) Insights into the ceria-catalyzed ketonization reaction for biofuels applications. ACS Catal 3:783–789

    Article  CAS  Google Scholar 

  149. Nagashima O, Sato S, Takahashi R, Sodesawa T (2005) Ketonization of carboxylic acids over CeO2-based composite oxides. J Mol Catal A 227:231–239

    Article  CAS  Google Scholar 

  150. Ignatchnko AV (2011) Density functional theory study of carboxylic acids adsorption and enolization on monoclinic zirconia surfaces. J Phys Chem 115:16012–16018

    Google Scholar 

  151. Pulido A, Oliver-Tomas B, Renz M, Boronat M, Corma A (2013) Ketonic decarboxylation reaction mechanism: a combined experimental and DFT study. ChemSusChem 6:141–151

    Article  CAS  Google Scholar 

  152. Gaertner CA, Serrano-Ruiz JC, Braden DJ, Dumesic JA (2009) Catalytic coupling of carboxylic acids by ketonization as a processing step in biomass conversion. J Catal 266:71–78

    Article  CAS  Google Scholar 

  153. Dooley KM, Bhat AK, Plaisance CP, Roy AD (2007) Ketones from acid condensation using supported CeO2 catalysts: effect of additives. Appl Catal A 320:122–133

    Article  CAS  Google Scholar 

  154. Pestman R, Koster RM, Pieterse JAZ, Ponec V (1997) Reactions of carboxylic acids on oxides: 1. Selective hydrogenation of acetic acid to acetaldehyde. J Catal 168:255–264

    Article  CAS  Google Scholar 

  155. Snell R, Hakim SH, Dumesic JA, Shanks BH (2013) Catalysis with ceria nanocrystals: bio-oil model compound ketonization. Appl Catal A 464:288–295

    Article  CAS  Google Scholar 

  156. Lercher JA, Gründling C, Eder-Mirth G (1996) Infrared studies of the surface acidity of oxides and zeolites using adsorbed probe molecules. Catal Today 27:353–376

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvador Ordóñez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Faba, L., Díaz, E., Ordóñez, S. (2016). Base-Catalyzed Reactions in Biomass Conversion: Reaction Mechanisms and Catalyst Deactivation. In: Schlaf, M., Zhang, Z. (eds) Reaction Pathways and Mechanisms in Thermocatalytic Biomass Conversion I. Green Chemistry and Sustainable Technology. Springer, Singapore. https://doi.org/10.1007/978-981-287-688-1_5

Download citation

Publish with us

Policies and ethics