Skip to main content

Bromine-Side Electrode Functionality

  • Chapter
  • First Online:
The Zinc/Bromine Flow Battery

Part of the book series: SpringerBriefs in Energy ((BRIEFSENERGY))

Abstract

The previous two chapters dealt with establishing a sound understanding of zinc-related physical and electrochemical processes, with a special focus on controlling electrodeposition in order to achieve optimal performance in the zinc half-cell. A similar approach can be taken for in-depth study of the bromine half-cell, with the aim of developing novel strategies and/or adapting existing methods of optimizing the Br–/Br2 redox to suit the Zn/Br electrochemical environment, thereby significantly improving Zn/Br system performance. This chapter reviews literature pertaining to relevant studies of reactions at the bromine-side electrode (both for within the Zn/Br system as well as different but related environments) to establish strong understanding of the fundamental physical and electrochemical processes that occur during charge and discharge phases of the battery. Materials challenges for conventional Zn/Br systems are highlighted and we review the viability of opportunities to improve electrode functionality through methods such as strategic catalyst doping leading to enhanced electrochemical performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. White RE (1983) A model of the bromine/bromide electrode reaction at a rotating disk electrode. J Electrochem Soc 130:1096. doi:10.1149/1.2119890

    Article  Google Scholar 

  2. Rubinstein I (1981) Electrode kinetics of the Br 2/Br- couple. J Phys Chem 85:1899–1906

    Article  Google Scholar 

  3. Cooper WD, Parsons R (1970) Kinetics of the bromine/bromide electrode on platinum in aqueous sulphuric acid. Trans Faraday Soc 66:1698. doi:10.1039/tf9706601698

    Article  Google Scholar 

  4. Llopis J, Vàzquez M (1962) Study of the impedance of a platinum electrode in the system Br 2/Br– (HClO4, aq.). I. Influence of the surface state. Electrochim Acta 6:167–176. doi:10.1016/0013-4686(62)87034-0

    Article  Google Scholar 

  5. Llopis J, Vazquez M (1962) Study of the impedance of a platinum electrode in the system Br 2/Br– (HClO4, aq.)—II. Mechanism of the electrode reaction. Electrochim Acta 6:177–183. doi:10.1016/0013-4686(62)87035-2

    Article  Google Scholar 

  6. Kautek W (1999) In situ investigations of bromine-storing complex formation in a zinc-flow battery at gold electrodes. J Electrochem Soc 146:3211–3216. doi:10.1149/1.1392456

    Article  Google Scholar 

  7. Faita G, Fiori G, Mussini T (1968) Electrochemical processes of the bromine/bromide system. Electrochim Acta 13:1765–1772. doi:10.1016/0013-4686(68)80084-2

    Article  Google Scholar 

  8. Vogel I, Möbius A (1991) On some problems of the zinc—bromine system as an electric energy storage system of higher efficiency—I. Kinetics of the bromine electrode. Electrochim Acta 36:1403–1408. doi:10.1016/0013-4686(91)85326-3

    Article  Google Scholar 

  9. Mastragostino M, Gramellini C (1985) Kinetic study of the electrochemical processes of the bromine/bromine aqueous system on vitreous carbon electrodes. Electrochim Acta 30:373–380

    Article  Google Scholar 

  10. Janssen LJJ, Hoogland JG (1970) Mechanism of bromine evolution at a graphite electrode. Electrochim Acta 15:1677–1683. doi:10.1016/0013-4686(70)80088-3

    Article  Google Scholar 

  11. Cathro KJ (1986) Zinc-bromine batteries for energy storage applications: volume 541 of end of grant report. Department of Resources and Energy, Canberra

    Google Scholar 

  12. Fabjan C, Hirss G (1986) On the kinetics and mechanism of bromine/bromide redox electrodes. Dechema Monogr 102:149–161

    Google Scholar 

  13. Suresh S, Kesavan T, Munaiah Y et al (2014) Zinc–bromine hybrid flow battery: effect of zinc utilization and performance characteristics. RSC Adv 4:37947. doi:10.1039/C4RA05946H

    Article  Google Scholar 

  14. Cathro KJ, Cedzynska K, Constable DC, Hoobin PM (1986) Selection of quaternary ammonium bromides for use in zinc/bromine cells. J Power Sources 18:349–370. doi:10.1016/0378-7753(86)80091-X

    Article  Google Scholar 

  15. Eustace DJ (1980) Bromine complexation in zinc-bromine circulating batteries. J Electrochem Soc 127:528–532. doi:10.1149/1.2129706

    Article  Google Scholar 

  16. Pichierri F (2011) Structure and bonding in polybromide anions Br–(Br 2)n (n = 1–6). Chem Phys Lett 515:116–121. doi:10.1016/j.cplett.2011.09.003

    Article  Google Scholar 

  17. Easton ME, Ward AJ, Hudson T et al (2015) The formation of high-order polybromides in a room-temperature ionic liquid: from monoanions ([Br 5]–to [Br11]–) to the isolation of [PC16H36]2[Br24] as determined by van der Waals Bonding Radii. Chem Eur J 21:2961–2965. doi:10.1002/chem.201404505

    Article  Google Scholar 

  18. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979. doi:10.1103/PhysRevB.50.17953

    Article  Google Scholar 

  19. Kresse G (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758–1775. doi:10.1103/PhysRevB.59.1758

    Article  Google Scholar 

  20. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B: Condens Matter 54:11169–11186

    Article  Google Scholar 

  21. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868. doi:10.1103/PhysRevLett.77.3865

    Google Scholar 

  22. Ridgway P, Cho KT, Battaglia VS, et al (2011) Redox kinetics of the bromine-bromide reaction for flow batteries. In: 220th ECS meeting and electrochemical energy summit

    Google Scholar 

  23. Will FG, Iacovangelo CD, Jackowski JS, Secor FW (1976) Assessment of zinc-bromine battery for utility load levelling: final report (DOE Contract No. EY-76-C-02-2950)

    Google Scholar 

  24. Kautek W, Conradi A, Fabjan C, Bauer G (2001) In situ FTIR spectroscopy of the Zn–Br battery bromine storage complex at glassy carbon electrodes. Electrochim Acta 47:815–823. doi:10.1016/S0013-4686(01)00762-9

    Article  Google Scholar 

  25. Bauer G, Drobits J, Fabjan C et al (1997) Raman spectroscopic study of the bromine storing complex phase in a zinc-flow battery. J Electroanal Chem 427:123–128. doi:10.1016/S0022-0728(96)04992-3

    Article  Google Scholar 

  26. Conway BE, Phillips Y, Qian SY (1995) Surface electrochemistry and kinetics of anodic bromine formation at platinum. J Chem Soc Faraday Trans 91:283. doi:10.1039/ft9959100283

    Article  Google Scholar 

  27. Mastragostino M, Valcher S, Lazzari P (1981) Mechanism of bromide ion oxidation on Pt electrode in CH2Cl2. J Electroanal Chem Interfacial Electrochem 126:189–198. doi:10.1016/S0022-0728(81)80428-7

    Article  Google Scholar 

  28. Iwasita T, Giordano MC (1969) Kinetics of the bromine-tribromide-bromide redox processes on platinum electrodes in acetonitrile solutions. Electrochim Acta 14:1045–1059. doi:10.1016/0013-4686(69)85038-3

    Article  Google Scholar 

  29. Dryhurst G, Elving PJ (1967) Electrooxidation of halides at pyrolytic graphite electrode in aqueous and acetonitrile solutions. Anal Chem 39:606–615. doi:10.1021/ac60250a014

    Article  Google Scholar 

  30. Tucker MC, Cho KT, Weber AZ et al (2014) Optimization of electrode characteristics for the Br 2/H2 redox flow cell. J Appl Electrochem 45:11–19. doi:10.1007/s10800-014-0772-1

    Article  Google Scholar 

  31. Yoneyama H, Laitinen HA (1977) Oxidation of bromide ion on tin oxide electrodes. J Electroanal Chem Interfacial Electrochem 75:647–663. doi:10.1016/S0022-0728(77)80206-4

    Article  Google Scholar 

  32. Cathro KJ, Cedzynska K, Constable DC (1987) Preparation and performance of plastic-bonded-carbon bromine electrodes. J Power Sources 19:337–356. doi:10.1016/0378-7753(87)87009-X

    Article  Google Scholar 

  33. Lex PJ, Matthews JF (1992) Recent developments in zinc/bromine battery technology at Johnson controls. In: IEEE 35th international power sources symposium. IEEE, pp 88–92

    Google Scholar 

  34. Munaiah Y, Dheenadayalan S, Ragupathy P, Pillai VK (2013) High performance carbon nanotube based electrodes for zinc bromine redox flow batteries. ECS J Solid State Sci Technol 2:M3182–M3186. doi:10.1149/2.024310jss

    Article  Google Scholar 

  35. Singh P, Jonshagen B (1991) Zinc bromine battery for energy storage. J Power Sources 35:405–410. doi:10.1016/0378-7753(91)80059-7

    Article  Google Scholar 

  36. Munaiah Y, Suresh S, Dheenadayalan S et al (2014) Comparative electrocatalytic performance of single-walled and multiwalled carbon nanotubes for zinc bromine redox flow Batteries. J Phys Chem C 118:14795–14804. doi:10.1021/jp503287r

    Article  Google Scholar 

  37. Cedzynska K (1995) Properties of modified electrolyte for zinc-bromine cells. Electrochim Acta 40:971–976. doi:10.1016/0013-4686(94)00372-8

    Article  Google Scholar 

  38. Cedzynska K (1989) Some properties of zinc-bromine cell electrolytes containing symmetrical ammonium bromides. Electrochim Acta 34:1439–1442. doi:10.1016/0013-4686(89)87185-3

    Article  Google Scholar 

  39. Donepudi VS (1984) Electrochemical calorimetry of the zinc and bromine electrodes in zinc-bromine and zinc-air batteries. J Electrochem Soc 131:1477–1485. doi:10.1149/1.2115877

    Article  Google Scholar 

  40. Nguyen TV, Kreutzer H, Yarlagadda V et al (2013) HER/HOR catalysts for the H2-Br 2 fuel cell system. ECS Trans 53:75–81. doi:10.1149/05307.0075ecst

    Article  Google Scholar 

  41. Zhang R, Stanford TG, Wolters L, Weidner J (2011) Development of non-Pt electrocatalysts towards hydrogen evolution reaction for gas-phase Br. In: Zaghib K, Julien C, Ramani V (eds) 218th ECS meeting: electrochemistry of novel materials for energy storage and conversion (October 10–15, 2010). Las Vegas, pp 169–178

    Google Scholar 

  42. Cho KT, Ridgway P, Weber AZ et al (2012) High performance hydrogen/bromine redox flow battery for grid-scale energy Storage. J Electrochem Soc 159:A1806–A1815. doi:10.1149/2.018211jes

    Article  Google Scholar 

  43. Van Zee J (1983) An analysis of a back fed porous electrode for the Br[sub 2]∕Br[sup −] redox reaction. J Electrochem Soc 130:2003. doi:10.1149/1.2119510

    Article  Google Scholar 

  44. Cameron DS, Cooper SJ, Dodgson IL et al (1990) Carbons as supports for precious metal catalysts. Catal Today 7:113–137. doi:10.1016/0920-5861(90)85012-D

    Article  Google Scholar 

  45. Ge SH, Yi BL, Zhang HM (2004) Study of a high power density sodium polysulfide/bromine energy storage cell. J Appl Electrochem 34:181–185. doi:10.1023/B:JACH.0000009936.82613.ad

    Article  Google Scholar 

  46. Zhao P, Zhang H, Zhou H, Yi B (2005) Nickel foam and carbon felt applications for sodium polysulfide/bromine redox flow battery electrodes. Electrochim Acta 51:1091–1098. doi:10.1016/j.electacta.2005.06.008

    Article  Google Scholar 

  47. Harrison JA, Hermijanto SD (1987) The oxidation of chloride ions and bromide ions on ruthenium dioxide electrodes. J Electroanal Chem Interfacial Electrochem 225:159–175. doi:10.1016/0022-0728(87)80011-6

    Article  Google Scholar 

  48. Maniatakou A, Parsons S, Karaliota A (2007) Photosensitized oxidation of bromide to bromine catalyzed by niobium pentachloride in methanol solution. J Photochem Photobiol A :Chem 192:29–35. doi:10.1016/j.jphotochem.2007.02.032

    Article  Google Scholar 

  49. Gratzel M, Halmann M (1990) Photosensitized oxidation of bromide to bromine with phthalic acid derivatives in aqueous solutions. Solar Energy Mater 20:117–129. doi:10.1016/0165-1633(90)90023-T

    Article  Google Scholar 

  50. Besson M, Gallezot P (2003) Deactivation of metal catalysts in liquid phase organic reactions. Catal Today 81:547–559. doi:10.1016/S0920-5861(03)00153-6

    Article  Google Scholar 

  51. Meille V (2006) Review on methods to deposit catalysts on structured surfaces. Appl Catal A: Gen 315:1–17. doi:10.1016/j.apcata.2006.08.031

    Article  Google Scholar 

  52. Qu L, Dai L (2005) Substrate-enhanced electroless deposition of metal nanoparticles on carbon nanotubes. J Am Chem Soc 127:10806–10807. doi:10.1021/ja053479+

    Article  Google Scholar 

  53. Rui X, Parasuraman A, Liu W et al (2013) Functionalized single-walled carbon nanotubes with enhanced electrocatalytic activity for redox reactions in vanadium bromide redox flow batteries. Carbon 64:464–471. doi:10.1016/j.carbon.2013.07.099

    Article  Google Scholar 

  54. Kumar K, Margerum DW (1987) Kinetics and mechanism of general-acid-assisted oxidation of bromide by hypochlorite and hypochlorous acid. Inorg Chem 26:2706–2711. doi:10.1021/ic00263a030

    Article  Google Scholar 

  55. Ferro S, Orsan C, De Battisti A (2005) The bromine electrode part II: reaction kinetics at polycrystalline Pt. J Appl Electrochem 35:273–278. doi:10.1007/s10800-004-6773-8

    Article  Google Scholar 

  56. Ferro S (2005) The bromine electrode part III: reaction kinetics at highly boron-doped diamond electrodes. J Appl Electrochem 35:279–283. doi:10.1007/s10800-004-6774-7

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gobinath Pillai Rajarathnam .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Rajarathnam, G.P., Vassallo, A.M. (2016). Bromine-Side Electrode Functionality. In: The Zinc/Bromine Flow Battery. SpringerBriefs in Energy. Springer, Singapore. https://doi.org/10.1007/978-981-287-646-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-287-646-1_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-287-645-4

  • Online ISBN: 978-981-287-646-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics