Skip to main content

Storing Electricity

  • Chapter
  • First Online:
The Zinc/Bromine Flow Battery

Part of the book series: SpringerBriefs in Energy ((BRIEFSENERGY))

Abstract

This chapter presents an overview of the need for energy storage at the utility-scale. We detail the role and attractiveness of redox flow battery systems in enabling grid-integration of renewable energy sources to resolve intermittent flux issues and resolve challenges against uptake faced by such sources. This is done via a general introduction of flow battery technology, with highlights of different types of established as well as recently developed redox flow battery systems. The current technological and commercial status of the Zn/Br system is discussed. This leads into an introduction of the various potential avenues of investigation to improve the performance and thus the commercial viability of the Zn/Br flow battery. A case is made for the need to adopt novel design approaches and actively seek better materials of construction for the next generation of Zn/Br batteries. Finally, the organizational structure of this book is explained with regard to categorizing detailed work related to both zinc and bromine half-cells into the various technical review themes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yekini Suberu M, Wazir Mustafa M, Bashir N (2014) Energy storage systems for renewable energy power sector integration and mitigation of intermittency. Renew Sustain Energy Rev 35:499–514. doi:10.1016/j.rser.2014.04.009

    Article  Google Scholar 

  2. Goodson A (2013) How energy storage provides solutions to renewable integration challenges. Proceedings of the 2013 electrical energy storage applications and technologies (EESAT) biennial international conference

    Google Scholar 

  3. Boicea VA (2014) Energy storage technologies: the past and the present. Proc IEEE 102:1777–1794. doi:10.1109/JPROC.2014.2359545

    Article  Google Scholar 

  4. Luo X, Wang J, Dooner M, Clarke J (2014) Overview of current development in electrical energy storage technologies and the application potential in power system operation. Appl Energy 137:511–536. doi:10.1016/j.apenergy.2014.09.081

    Article  Google Scholar 

  5. Zakeri B, Syri S (2015) Electrical energy storage systems: A comparative life cycle cost analysis. Renew Sustain Energy Rev 42:569–596. doi:10.1016/j.rser.2014.10.011

    Article  Google Scholar 

  6. Spanos C, Turney DE, Fthenakis V (2015) Life-cycle analysis of flow-assisted nickel zinc-, manganese dioxide-, and valve-regulated lead-acid batteries designed for demand-charge reduction. Renew Sustain Energy Rev 43:478–494. doi:10.1016/j.rser.2014.10.072

    Article  Google Scholar 

  7. Larcher D, Tarascon J-M (2014) Towards greener and more sustainable batteries for electrical energy storage. Nat Chem 7:19–29. doi:10.1038/nchem.2085

    Article  Google Scholar 

  8. Akinyele DO, Rayudu RK (2014) Review of energy storage technologies for sustainable power networks. Sustain Energy Technol Assess 8:74–91. doi:10.1016/j.seta.2014.07.004

    Article  Google Scholar 

  9. Barnhart CJ (2013) The energetic implications of curtailing or storing wind and solar generated electricity. Proceedings of the 2013 electrical energy storage applications and technologies (EESAT) biennial international conference

    Google Scholar 

  10. Electricity Advisory Committee (2008) Bottling electricity: storage as a strategic tool for managing variability and capacity concerns in the modern grid

    Google Scholar 

  11. Elsevier BV (2014) J Power Sources http://www.journals.elsevier.com/journal-of-power-sources

  12. Beaudin M, Zareipour H, Schellenberglabe A, Rosehart W (2010) Energy storage for mitigating the variability of renewable electricity sources: an updated review. Energy Sustain Dev 14:302–314. doi:10.1016/j.esd.2010.09.007

    Article  Google Scholar 

  13. Rose DM, Ferreira SR (2013) Performance testing of zinc-bromine flow batteries for remote telecom sites. The battconTM 2013 stationary battery conference and trade show. pp 1–11

    Google Scholar 

  14. Smith SC, Sen PK, Kroposki B, Malmedal K (2010) Renewable energy and energy storage systems in rural electrical power systems: issues, challenges and application guidelines. 2010 IEEE rural electric power conference (REPC). IEEE, pp B4–B4–7

    Google Scholar 

  15. Dunn B, Kamath H, Tarascon J-M (2011) Electrical energy storage for the grid: a battery of choices. Science 334:928–935. doi:10.1126/science.1212741

    Article  Google Scholar 

  16. Parasuraman A, Lim TM, Menictas C, Skyllas-Kazacos M (2013) Review of material research and development for vanadium redox flow battery applications. Electrochim Acta 101:27–40. doi:10.1016/j.electacta.2012.09.067

    Article  Google Scholar 

  17. Cunha Á, Martins J, Rodrigues N, Brito FP (2014) Vanadium redox flow batteries: a technology review. Int J Energy Res n/a–n/a. doi: 10.1002/er.3260

    Google Scholar 

  18. Braff WA, Bazant MZ, Buie CR (2013) Membrane-less hydrogen bromine flow battery. Nat Commun 4:1–6. doi:10.1038/ncomms3346

    Article  Google Scholar 

  19. Weber AZ, Cho KT, Tucker M, et al. (2013) Hydrogen/bromine flow batteries. Proceedings of the 2013 electrical energy storage applications and technologies (EESAT) biennial international conference

    Google Scholar 

  20. Bae C, Roberts EPL, Chakrabarti MH, Saleem M (2011) All-chromium redox flow battery for renewable energy storage. Int J Green Energy 8:248–264. doi:10.1080/15435075.2010.549598

    Article  Google Scholar 

  21. Xing X, Zhang D, Li Y (2015) A non-aqueous all-cobalt redox flow battery using 1,10-phenanthrolinecobalt(II) hexafluorophosphate as active species. J Power Sour 279:205–209. doi:10.1016/j.jpowsour.2015.01.011

    Article  Google Scholar 

  22. Walsh FC, Ponce de Léon C, Berlouis L, et al. (2014) The development of Zn-Ce hybrid redox flow batteries for energy storage and their continuing challenges. chemPlusChem n/a–n/a. doi: 10.1002/cplu.201402103

    Google Scholar 

  23. Leung P (2011) Development of a zinc-cerium redox flow battery. University of Southampton

    Google Scholar 

  24. Leung PK, Ponce-de-León C, Low CTJ et al (2011) Characterization of a zinc–cerium flow battery. J Power Sources 196:5174–5185. doi:10.1016/j.jpowsour.2011.01.095

    Article  Google Scholar 

  25. Xie Z, Liu Q, Chang Z, Zhang X (2013) The developments and challenges of cerium half-cell in zinc–cerium redox flow battery for energy storage. Electrochim Acta 90:695–704. doi:10.1016/j.electacta.2012.12.066

    Article  Google Scholar 

  26. Bhavaraju S (2013) Development of Sodium-Iodine battery for large-scale energy storage. Proceedings of the 2013 electrical energy storage applications and technologies (EESAT) biennial international conference

    Google Scholar 

  27. Sanz L, Lloyd D, Magdalena E et al (2015) Study and characterization of positive electrolytes for application in the aqueous all-copper redox flow battery. J Power Sources 278:175–182. doi:10.1016/j.jpowsour.2014.12.034

    Article  Google Scholar 

  28. Sanz L, Lloyd D, Magdalena E et al (2014) Description and performance of a novel aqueous all-copper redox flow battery. J Power Sources 268:121–128. doi:10.1016/j.jpowsour.2014.06.008

    Article  Google Scholar 

  29. Lloyd D, Magdalena E, Sanz L et al (2015) Preparation of a cost-effective, scalable and energy efficient all-copper redox flow battery. J Power Sources 292:87–94. doi:10.1016/j.jpowsour.2015.04.176

    Article  Google Scholar 

  30. McKerracher RD, Ponce de Leon C, Wills RG a., et al. (2014) A Review of the Iron-Air secondary battery for energy storage. ChemPlusChem n/a–n/a. doi: 10.1002/cplu.201402238

    Google Scholar 

  31. Li B, Nie Z, Vijayakumar M et al (2015) Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery. Nat Commun 6:6303. doi:10.1038/ncomms7303

    Article  Google Scholar 

  32. Wu M, Liu M, Long G et al (2014) A novel high-energy-density positive electrolyte with multiple redox couples for redox flow batteries. Appl Energy 136:576–581. doi:10.1016/j.apenergy.2014.09.076

    Article  Google Scholar 

  33. Oh SH, Lee C-W, Chun DH et al (2014) A metal-free and all-organic redox flow battery with polythiophene as the electroactive species. J Mater Chem A 2:19994–19998. doi:10.1039/C4TA04730C

    Article  Google Scholar 

  34. Chang Z, Wang X, Yang Y et al (2014) Rechargeable Li//Br battery: a promising platform for post lithium ion batteries. J Mater Chem A 2:19444–19450. doi:10.1039/C4TA04419C

    Article  Google Scholar 

  35. Wang W, Li L, Nie Z et al (2012) A new hybrid redox flow battery with multiple redox couples. J Power Sources 216:99–103. doi:10.1016/j.jpowsour.2012.05.032

    Article  Google Scholar 

  36. Huskinson B, Marshak MP, Suh C et al (2014) A metal-free organic-inorganic aqueous flow battery. Nature 505:195–198. doi:10.1038/nature12909

    Article  Google Scholar 

  37. Soloveichik GL (2014) Electrochemistry: metal-free energy storage. Nature 505:163–165. doi:10.1038/505163a

    Article  Google Scholar 

  38. Huskinson B, Marshak MP, Gerhardt MR, Aziz MJ (2014) Cycling of a quinone-bromide flow battery for large-scale electrochemical energy storage. ECS Trans 61:27–30. doi:10.1149/06137.0027ecst

    Article  Google Scholar 

  39. Er S, Suh C, Marshak MP, Aspuru-Guzik A (2014) Computational design of molecules for an all-quinone redox flow battery. Chem Sci. doi:10.1039/C4SC03030C

    Google Scholar 

  40. Denholm P, Jorgenson J, Hummon M, et al. (2013) Valuation of energy storage - quantification and ongoing policy challenges. Proceedings of the 2013 electrical energy storage applications and technologies (EESAT) biennial international conference

    Google Scholar 

  41. Putt RA (1979) Assessment of technical and economic feasibility of zinc/bromine batteries for utility load leveling. Palo Alto, CA, USA

    Google Scholar 

  42. Exxon Research and Engineering Company (1983) Development of a circulating zinc-bromine battery. phase I. Final Report, Linden, New Jersey

    Google Scholar 

  43. Exxon Research and Engineering Company (1983) Development of a circulating zinc-bromine battery. phase II. Final Report, Linden, New Jersey

    Google Scholar 

  44. Exxon Research and Engineering Company (1984) Zinc/Bromide Battery Development— Phase III. J Power Sources 11:324–326. doi:10.1016/0378-7753(84)87057-3

    Google Scholar 

  45. Cathro KJ (1986) Zinc-bromine batteries for energy storage applications: volume 541 of end of grant report. Department of resources and energy, Canberra, Australia

    Google Scholar 

  46. Bolstad JJ, Miles RC (1989) Development of the zinc/bromine battery at Johnson Controls Inc. Proceedings of the 24th intersociety energy conversion engineering conference. IEEE, Washington, DC, pp 1311–1318

    Google Scholar 

  47. Lex PJ, Matthews JF (1992) Recent developments in zinc/bromine battery technology at Johnson controls. IEEE 35th international power sources symposium. IEEE, pp 88–92

    Google Scholar 

  48. Bartolozzi M (1989) Development of redox flow batteries. A historical bibliography. J Power Sources 27:219–234. doi:10.1016/0378-7753(89)80037-0

    Article  Google Scholar 

  49. Butler P, Eidler P, Grimes P (2001) Zinc/bromine batteries. In: Linden D, Reddy TB (eds) Handbook of batteries. McGraw-Hill, pp 37.1–37.16

    Google Scholar 

  50. Linden D, Reddy TB (2001) Handbook of batteries, Third Edit. McGraw-Hill Professional, New York

    Google Scholar 

  51. Weber AZ, Mench MM, Meyers JP et al (2011) Redox flow batteries: A review. J Appl Electrochem 41:1137–1164. doi:10.1007/s10800-011-0348-2

    Article  Google Scholar 

  52. RedFlow Ltd. (2013) Redflow limited—energy storage solutions. http://www.redflow.com

  53. Premium Power Corp. (2011) Premium Power - Zinc-Flow(R) Technology. In: Zinc-Flow(R) Technology. http://www.premiumpower.com

  54. Primus Power (2012) Primus Power. http://www.primuspower.com

  55. Hall J (2013) High performance flowing electrolyte battery for grid scale energy storage. Proceedings of the 2013 electrical energy storage applications and technologies (EESAT) biennial international conference

    Google Scholar 

  56. ZBB Energy Corp. (2014) ZBB Energy :: Zn-Br Flow Battery Technology. http://www.zbbenergy.com

  57. Ponce de Leon C, Walsh FC (2009) Secondary batteries—zinc systems | zinc-bromine. In: Dyer C, Garche J, Moseley P et al (eds) Encyclopedia of electrochemical power Sources. Elsevier, Amsterdam, NL, pp 487–496

    Chapter  Google Scholar 

  58. Beck F, Rüetschi P (2000) Rechargeable batteries with aqueous electrolytes. Electrochim Acta 45:2467–2482. doi:10.1016/S0013-4686(00)00344-3

    Article  Google Scholar 

  59. Geological Survey US (2011) Mineral Commodity Summaries 2011. Reson, Virginia, USA

    Google Scholar 

  60. The London Metal Exchange (2014) Settlement prices. http://www.lme.com/

  61. Bureau of Labor Statistics (U.S. Department of Labor) (2014) Inflation Calculator: Bureau of Labor Statistics. In: CPI Inflation Calculator. http://www.bls.gov/data/inflation_calculator.htm

  62. Bradbury K, Pratson L, Patiño-Echeverri D (2014) Economic viability of energy storage systems based on price arbitrage potential in real-time U.S. electricity markets. Appl Energy 114:512–519. doi:10.1016/j.apenergy.2013.10.010

    Article  Google Scholar 

  63. Aburub H, Jewell WT, Price JE (2013) Assessment of the use of CAISO wholesale grid state indicator to schedule storage. 2013 North American Power Symposium (NAPS). IEEE, pp 1–6

    Google Scholar 

  64. Nykvist B, Nilsson M (2015) Rapidly falling costs of battery packs for electric vehicles. Nat Clim Change 5:329–332. doi:10.1038/nclimate2564

    Article  Google Scholar 

  65. Parry R (2013) From concept to commercialization—China as a design and engineering base for low cost flow battery products. Proceedings of the 2013 electrical energy storage applications and technologies (EESAT) biennial international conference

    Google Scholar 

  66. Montoya TL, Meacham PG, Perry DA, et al. (2014) Flow battery system design for manufacturability. Albuquerque

    Google Scholar 

  67. Mastragostino M, Valcher S (1983) Polymeric salt as bromine complexing agent in a Zn-Br 2 model battery. Electrochim Acta 28:501–505. doi:10.1016/0013-4686(83)85034-8

    Article  Google Scholar 

  68. Poon G, Parasuraman A, Lim TM, Skyllas-Kazacos M (2013) Evaluation of N-ethyl-N-methyl-morpholinium bromide and N-ethyl-N-methyl-pyrrolidinium bromide as bromine complexing agents in vanadium bromide redox flow batteries. Electrochim Acta 107:388–396. doi:10.1016/j.electacta.2013.06.084

    Article  Google Scholar 

  69. Cathro KJ, Cedzynska K, Constable DC (1985) Some properties of zinc/bromine battery electrolytes. J Power Sources 16:53–63. doi:10.1016/0378-7753(85)80003-3

    Article  Google Scholar 

  70. Chalamala BR, Soundappan T, Fisher GR et al (2014) Redox Flow Batteries: an Engineering Perspective. Proc IEEE 102:976–999. doi:10.1109/JPROC.2014.2320317

    Article  Google Scholar 

  71. Moro LMS (2013) Trends in redox flow battery technology and project REDOX2015. 2013 International conference on new concepts in smart cities: fostering public and private alliances (SmartMILE). IEEE, Spain, pp 1–4

    Google Scholar 

  72. Wang W, Luo Q, Li B et al (2013) Recent Progress in Redox Flow Battery Research and Development. Adv Funct Mater 23:970–986. doi:10.1002/adfm.201200694

    Article  MathSciNet  Google Scholar 

  73. Ponce de León C, Frías-Ferrer A, González-García J et al (2006) Redox flow cells for energy conversion. J Power Sources 160:716–732. doi:10.1016/j.jpowsour.2006.02.095

    Article  Google Scholar 

  74. Skyllas-Kazacos M, Chakrabarti MH, Hajimolana SA et al (2011) Progress in flow battery research and development. J Electrochem Soc 158:R55. doi:10.1149/1.3599565

    Article  Google Scholar 

  75. Palacín MR (2009) Recent advances in rechargeable battery materials: a chemist’s perspective. Chem Soc Rev 38:2565–2575. doi:10.1039/b820555h

    Article  Google Scholar 

  76. Kear G, Shah AA, Walsh FC (2012) Development of the all-vanadium redox flow battery for energy storage: a review of technological, financial and policy aspects. Int J Energy Res 36:1105–1120. doi:10.1002/er.1863

    Article  Google Scholar 

  77. Skyllas-Kazacos M, Kazacos G, Poon G, Verseema H (2010) Recent advances with UNSW vanadium-based redox flow batteries. Int J Energy Res 34:182–189. doi:10.1002/er.1658

    Article  Google Scholar 

  78. Huang K-L, Li X, Liu S et al (2008) Research progress of vanadium redox flow battery for energy storage in China. Renew Energy 33:186–192. doi:10.1016/j.renene.2007.05.025

    Article  Google Scholar 

  79. Lee KJ, Chu YH (2014) Preparation of the graphene oxide (GO)/Nafion composite membrane for the vanadium redox flow battery (VRB) system. Vacuum 107:269–276. doi:10.1016/j.vacuum.2014.02.023

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gobinath Pillai Rajarathnam .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Rajarathnam, G.P., Vassallo, A.M. (2016). Storing Electricity. In: The Zinc/Bromine Flow Battery. SpringerBriefs in Energy. Springer, Singapore. https://doi.org/10.1007/978-981-287-646-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-287-646-1_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-287-645-4

  • Online ISBN: 978-981-287-646-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics