Skip to main content

High Resolution Optical Coherence Tomography for Bio-Imaging

  • Chapter
  • First Online:

Part of the book series: Progress in Optical Science and Photonics ((POSP,volume 3))

Abstract

Optical coherence tomography (OCT) is a low-coherence interferometry based bio-imaging technology. It has attracted extensive research interests in recent years for its non-invasive, high-speed and high-resolution properties. Numerous schemes for improving OCT resolutions have been demonstrated in literature. This chapter gives a comprehensive review of the recent developments of spectral domain (SD)-OCT systems with either high axial-resolution or lateral resolution, and then highlights the wide applications of such high-resolution OCT systems in biomedical imaging process. The influences of high-resolution OCT systems towards translational medicine are also discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, J.G. Fujimoto, Optical coherence tomography. Science 254, 1178–1181 (1991)

    Article  Google Scholar 

  2. W. Drexler, J.G. Fujimoto, Optical Coherence Tomography: Technology and Applications (Springer, 2008)

    Google Scholar 

  3. A.F. Fercher, C.K. Hitzenberger, G. Kamp, S.Y. El-Zaiat, Measurement of intraocular distances by backscattering spectral interferometry. Opt. Commun. 117, 43–48 (1995)

    Article  Google Scholar 

  4. T. Klein, W. Wieser, C.M. Eigenwillig, B.R. Biedermann, R. Huber, Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser. Opt. Express 19, 3044–3062 (2011)

    Article  Google Scholar 

  5. Y. Hori, Y. Yasuno, S. Sakai, M. Matsumoto, T. Sugawara, V. Madjarova, M. Yamanari, S. Makita, T. Yasui, T. Araki, Automatic characterization and segmentation of human skin using three-dimensional optical coherence tomography. Opt. Express 14, 1862–1877 (2006)

    Article  Google Scholar 

  6. S.A. Boppart, B.E. Bouma, C. Pitris, J.F. Southern, M.E. Brezinski, J.G. Fujimoto, In vivo cellular optical coherence tomography imaging. Nat. Med. 4, 861–865 (1998)

    Article  Google Scholar 

  7. E.J. Fernandez, B. Hermann, B. Povazay, A. Unterhuber, H. Sattmann, B. Hofer, P.K. Ahnelt, W. Drexler, Ultrahigh resolution optical coherence tomography and pancorrection for cellular imaging of the living human retina. Opt. Express 16, 11083–11094 (2008)

    Article  Google Scholar 

  8. M. Choma, M. Sarunic, C. Yang, J. Izatt, Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Opt. Express 11, 2183–2189 (2003)

    Article  Google Scholar 

  9. G. Hausler, M.W. Lindner, “Coherence Radar” and “Spectral Radar”—New tools for dermatological diagnosis. J. Biomed. Opt. 3, 21–31 (1998)

    Article  Google Scholar 

  10. E.A. Swanson, D. Huang, C. Lin, C. Puliafito, M. Hee, J. Fujimoto, High-speed optical coherence domain reflectometry. Opt. Lett. 17, 151–153 (1992)

    Article  Google Scholar 

  11. A.F. Fercher, W. Drexler, C.K. Hitzenberger, T. Lasser, Optical coherence tomography-principles and applications. Rep. Prog. Phys. 66, 239 (2003)

    Article  Google Scholar 

  12. M.E. van Velthoven, D.J. Faber, F.D. Verbraak, T.G. van Leeuwen, M.D. de Smet, Recent developments in optical coherence tomography for imaging the retina. Progr. Retinal Eye Res. 26, 57–77 (2007)

    Article  Google Scholar 

  13. M.R. Hee, J.A. Izatt, E.A. Swanson, D. Huang, J.S. Schuman, C.P. Lin, C.A. Puliafito, J.G. Fujimoto, Optical coherence tomography of the human retina. Arch. Ophthalmol. 113, 325–332 (1995)

    Article  Google Scholar 

  14. M.E. van Velthoven, F.D. Verbraak, L.A. Yannuzzi, R.B. Rosen, A.G. Podoleanu, M.D. De Smet, Imaging the retina by en face optical coherence tomography. Retina 26, 129–136 (2006)

    Article  Google Scholar 

  15. W. Drexler, Ultrahigh-resolution optical coherence tomography. J. Biomed. Opt. 9, 47–74 (2004)

    Article  Google Scholar 

  16. J.F. de Boer, B. Cense, B.H. Park, M.C. Pierce, G.J. Tearney, B.E. Bouma, Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. Opt. Lett. 28, 2067–2069 (2003)

    Article  Google Scholar 

  17. M. Wojtkowski, T. Bajraszewski, P. Targowski, A. Kowalczyk, Real-time in vivo imaging by high-speed spectral optical coherence tomography. Opt. Lett. 28, 1745–1747 (2003)

    Article  Google Scholar 

  18. N. Nassif, B. Cense, B. Hyle Park, S.H. Yun, T.C. Chen, B.E. Bouma, G.J. Tearney, JFd Boer, In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography. Opt. Lett. 29, 480–482 (2004)

    Article  Google Scholar 

  19. N. Nassif, B. Cense, B. Park, M. Pierce, S. Yun, B. Bouma, G. Tearney, T. Chen, J. de Boer, In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve. Opt. Express 12, 367–376 (2004)

    Article  Google Scholar 

  20. E. Götzinger, M. Pircher, C.K. Hitzenberger, High speed spectral domain polarization sensitive optical coherence tomography of the human retina. Opt. Express 13, 10217–10229 (2005)

    Article  Google Scholar 

  21. B. White, M. Pierce, N. Nassif, B. Cense, B. Park, G. Tearney, B. Bouma, T. Chen, J. de Boer, In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography. Opt. Express 11, 3490–3497 (2003)

    Article  Google Scholar 

  22. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, A.F. Fercher, T. Bajraszewski, In vivo human retinal imaging by Fourier domain optical coherence tomography. J. Biomed. Opt. 7, 457–463 (2002)

    Article  Google Scholar 

  23. Y. Nakamura, S. Makita, M. Yamanari, M. Itoh, T. Yatagai, Y. Yasuno, High-speed three-dimensional human retinal imaging by line-field spectral domain optical coherence tomography. Opt. Express 15, 7103–7116 (2007)

    Article  Google Scholar 

  24. H.-C. Lee, J.J. Liu, Y. Sheikine, A.D. Aguirre, J.L. Connolly, J.G. Fujimoto, Ultrahigh speed spectral-domain optical coherence microscopy. Biomed. Opt. Express 4, 1236–1254 (2013)

    Article  Google Scholar 

  25. M. Zhang, L. Ma, P. Yu, Dual-band Fourier domain optical coherence tomography with depth-related compensations. Biomed. Opt. Express 5, 167–182 (2014)

    Article  Google Scholar 

  26. B. Cense, N. Nassif, T. Chen, M. Pierce, S.-H. Yun, B. Park, B. Bouma, G. Tearney, J. de Boer, Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography. Opt. Express 12, 2435–2447 (2004)

    Article  Google Scholar 

  27. M. Wojtkowski, V.J. Srinivasan, T.H. Ko, J.G. Fujimoto, A. Kowalczyk, J.S. Duker, Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation. Opt. Express 12, 2404–2422 (2004)

    Article  Google Scholar 

  28. R. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, A. Fercher, Ultrahigh resolution Fourier domain optical coherence tomography. Opt. Express 12, 2156–2165 (2004)

    Article  Google Scholar 

  29. J. Schmitt, A. Knüttel, Model of optical coherence tomography of heterogeneous tissue. JOSA A 14, 1231–1242 (1997)

    Article  Google Scholar 

  30. S. Yun, G. Tearney, J. de Boer, N. Iftimia, B. Bouma, High-speed optical frequency-domain imaging. Opt. Express 11, 2953–2963 (2003)

    Article  Google Scholar 

  31. S.H. Yun, G.J. Tearney, B.J. Vakoc, M. Shishkov, W.Y. Oh, A.E. Desjardins, M.J. Suter, R.C. Chan, J.A. Evans, I.K. Jang, N.S. Nishioka, J.F. de Boer, B.E. Bouma, Comprehensive volumetric optical microscopy in vivo. Nat. Med. 12, 1429–1433 (2006)

    Article  Google Scholar 

  32. M. Gora, K. Karnowski, M. Szkulmowski, B.J. Kaluzny, R. Huber, A. Kowalczyk, M. Wojtkowski, Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range. Opt. Express 17, 14880–14894 (2009)

    Article  Google Scholar 

  33. E. Braunwald, E.M. Antman, J.W. Beasley, R.M. Califf, M.D. Cheitlin, J.S. Hochman, R.H. Jones, D. Kereiakes, J. Kupersmith, T.N. Levin, C.J. Pepine, J.W. Schaeffer, E.E. Smith 3rd, D.E. Steward, P. Theroux, R.J. Gibbons, J.S. Alpert, D.P. Faxon, V. Fuster, G. Gregoratos, L.F. Hiratzka, A.K. Jacobs, S.C. Smith Jr, ACC/AHA guideline update for the management of patients with unstable angina and non-ST-segment elevation myocardial infarction–2002: summary article: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on the Management of Patients With Unstable Angina). Circulation 106, 1893–1900 (2002)

    Article  Google Scholar 

  34. R. Huber, M. Wojtkowski, K. Taira, J. Fujimoto, K. Hsu, Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles. Opt. Express 13, 3513–3528 (2005)

    Article  Google Scholar 

  35. R. Huber, M. Wojtkowski, J.G. Fujimoto, J. Jiang, A. Cable, Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm. Opt. Express 13, 10523–10538 (2005)

    Article  Google Scholar 

  36. R. Huber, M. Wojtkowski, J.G. Fujimoto, Fourier domain mode locking (FDML): a new laser operating regime and applications for optical coherence tomography. Opt. Express 14, 3225–3237 (2006)

    Article  Google Scholar 

  37. M.A. Choma, K. Hsu, J.A. Izatt, Swept source optical coherence tomography using an all-fiber 1300‐nm ring laser source. J. Biomed. Opt. 10, 044009-044009-044006 (2005)

    Google Scholar 

  38. S. Yun, G. Tearney, B. Bouma, B. Park, J. de Boer, High-speed spectral-domain optical coherence tomography at 1.3 µm wavelength. Opt. Express 11, 3598–3604 (2003)

    Article  Google Scholar 

  39. L. Pantanowitz, P.L. Hsiung, T.H. Ko, K. Schneider, P.R. Herz, J.G. Fujimoto, S. Raza, J.L. Connolly, High-resolution imaging of the thyroid gland using optical coherence tomography. Head Neck 26, 425–434 (2004)

    Article  Google Scholar 

  40. P. Herz, Y. Chen, A. Aguirre, J. Fujimoto, H. Mashimo, J. Schmitt, A. Koski, J. Goodnow, C. Petersen, Ultrahigh resolution optical biopsy with endoscopic optical coherence tomography. Opt. Express 12, 3532–3542 (2004)

    Article  Google Scholar 

  41. P.-L. Hsiung, L. Pantanowitz, A.D. Aguirre, Y. Chen, D. Phatak, T.H. Ko, S. Bourquin, S.J. Schnitt, S. Raza, J.L. Connolly, Ultrahigh-resolution and 3-dimensional optical coherence tomography ex vivo imaging of the large and small intestines. Gastrointest. Endosc. 62, 561–574 (2005)

    Article  Google Scholar 

  42. B. Park, M.C. Pierce, B. Cense, S.-H. Yun, M. Mujat, G. Tearney, B. Bouma, J. de Boer, Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 µm. Opt. Express 13, 3931–3944 (2005)

    Article  Google Scholar 

  43. M.M. Eberle, C.L. Reynolds, J.I. Szu, Y. Wang, A.M. Hansen, M.S. Hsu, M.S. Islam, D.K. Binder, B.H. Park, In vivo detection of cortical optical changes associated with seizure activity with optical coherence tomography. Biomed. Opt. Express 3, 2700–2706 (2012)

    Article  Google Scholar 

  44. Y. Wang, C.M. Oh, M.C. Oliveira, M.S. Islam, A. Ortega, B.H. Park, GPU accelerated real-time multi-functional spectral-domain optical coherence tomography system at 1300 nm. Opt. Express 20, 14797–14813 (2012)

    Article  Google Scholar 

  45. Y. Watanabe, Y. Takahashi, H. Numazawa, Graphics processing unit accelerated intensity-based optical coherence tomography angiography using differential frames with real-time motion correction. J. Biomed. Opt. 19, 021105–021105 (2014)

    Article  Google Scholar 

  46. C.L. Rodriguez, J.I. Szu, M.M. Eberle, Y. Wang, M.S. Hsu, D.K. Binder, B.H. Park, Decreased light attenuation in cerebral cortex during cerebral edema detected using optical coherence tomography. Neurophotonics 1, 025004–025004 (2014)

    Article  Google Scholar 

  47. B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A.F. Fercher, W. Drexler, A. Apolonski, W.J. Wadsworth, J.C. Knight, P.S.J. Russell, M. Vetterlein, E. Scherzer, Submicrometer axial resolution optical coherence tomography. Opt. Lett. 27, 1800–1802 (2002)

    Article  Google Scholar 

  48. Y. Wang, J. Nelson, Z. Chen, B. Reiser, R. Chuck, R. Windeler, Optimal wavelength for ultrahigh-resolution optical coherence tomography. Opt. Express 11, 1411–1417 (2003)

    Article  Google Scholar 

  49. S. Bourquin, A. Aguirre, I. Hartl, P. Hsiung, T. Ko, J. Fujimoto, T. Birks, W. Wadsworth, U. Bünting, D. Kopf, Ultrahigh resolution real time OCT imaging using a compact femtosecond Nd: glass laser and nonlinear fiber. Opt. Express 11, 3290–3297 (2003)

    Article  Google Scholar 

  50. B. Potsaid, B. Baumann, D. Huang, S. Barry, A.E. Cable, J.S. Schuman, J.S. Duker, J.G. Fujimoto, Ultrahigh speed 1050 nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second. Opt. Express 18, 20029–20048 (2010)

    Article  Google Scholar 

  51. I. Grulkowski, J.J. Liu, B. Potsaid, V. Jayaraman, C.D. Lu, J. Jiang, A.E. Cable, J.S. Duker, J.G. Fujimoto, Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers. Biomed. Opt. Express 3, 2733–2751 (2012)

    Article  Google Scholar 

  52. S. Makita, T. Fabritius, Y. Yasuno, Full-range, high-speed, high-resolution 1-μm spectral-domain optical coherence tomography using BM-scan for volumetric imaging of the human posterior eye. Opt. Express 16, 8406–8420 (2008)

    Article  Google Scholar 

  53. L. An, P. Li, G. Lan, D. Malchow, R.K. Wang, High-resolution 1050 nm spectral domain retinal optical coherence tomography at 120 kHz A-scan rate with 6.1 mm imaging depth. Biomed. Opt. Express 4, 245–259 (2013)

    Article  Google Scholar 

  54. M. Mujat, R. Chan, B. Cense, B. Park, C. Joo, T. Akkin, T. Chen, J. de Boer, Retinal nerve fiber layer thickness map determined from optical coherence tomography images. Opt. Express 13, 9480–9491 (2005)

    Article  Google Scholar 

  55. P.-L. Hsiung, D.R. Phatak, Y. Chen, A.D. Aguirre, J.G. Fujimoto, J.L. Connolly, Benign and malignant lesions in the human breast depicted with ultrahigh resolution and three-dimensional optical coherence tomography 1. Radiology 244, 865–874 (2007)

    Article  Google Scholar 

  56. M. Esmaeelpour, B. Považay, B. Hermann, B. Hofer, V. Kajic, K. Kapoor, N.J. Sheen, R.V. North, W. Drexler, Three-dimensional 1060-nm OCT: choroidal thickness maps in normal subjects and improved posterior segment visualization in cataract patients. Invest. Ophthalmol. Vis. Sci. 51, 5260–5266 (2010)

    Article  Google Scholar 

  57. V.J. Srinivasan, T.H. Ko, M. Wojtkowski, M. Carvalho, A. Clermont, S.-E. Bursell, Q.H. Song, J. Lem, J.S. Duker, J.S. Schuman, Noninvasive volumetric imaging and morphometry of the rodent retina with high-speed, ultrahigh-resolution optical coherence tomography. Invest. Ophthalmol. Vis. Sci. 47, 5522–5528 (2006)

    Article  Google Scholar 

  58. W. Drexler, J.G. Fujimoto, State-of-the-art retinal optical coherence tomography. Progr. Retinal Eye Res. 27, 45–88 (2008)

    Article  Google Scholar 

  59. A.G. Podoleanu, R.B. Rosen, Combinations of techniques in imaging the retina with high resolution. Progr. Retinal Eye Res. 27, 464–499 (2008)

    Article  Google Scholar 

  60. M. Ruggeri, H. Wehbe, S. Jiao, G. Gregori, M.E. Jockovich, A. Hackam, Y. Duan, C.A. Puliafito, In vivo three-dimensional high-resolution imaging of rodent retina with spectral-domain optical coherence tomography. Invest. Ophthalmol. Vis. Sci. 48, 1808–1814 (2007)

    Article  Google Scholar 

  61. M. Fleckenstein, P.C. Issa, H.-M. Helb, S. Schmitz-Valckenberg, R.P. Finger, H.P. Scholl, K.U. Loeffler, F.G. Holz, High-resolution spectral domain-OCT imaging in geographic atrophy associated with age-related macular degeneration. Invest. Ophthalmol. Vis. Sci. 49, 4137–4144 (2008)

    Article  Google Scholar 

  62. M.B. Rüegsegger, D. Geiser, P. Steiner, A. Pica, D.M. Aebersold, J.H. Kowal, Noninvasive referencing of intraocular tumors for external beam radiation therapy using optical coherence tomography: a proof of concept. Med. Phys. 41, 081704 (2014)

    Article  Google Scholar 

  63. K. Bizheva, A. Stingl, M. Mei, H.A. Reitsamer, J.E. Morgan, A. Cowey, R. Holzwarth, T. Le, A. Unterhuber, B. Hermann, Imaging ex vivo and in vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography. J. Biomed. Opt. 9, 719–724 (2004)

    Article  Google Scholar 

  64. K. Bizheva, A. Unterhuber, B. Hermann, B. PovazË, H. Sattmann, A.F. Fercher, W. Drexler, M. Preusser, H. Budka, A. Stingl, Imaging ex vivo healthy and pathological human brain tissue with ultra-high-resolution optical coherence tomography. J. Biomed. Opt. 10, 011006–0110067 (2005)

    Article  Google Scholar 

  65. A.R. Tumlinson, J.K. Barton, B. Povazay, H. Sattman, A. Unterhuber, R.A. Leitgeb, W. Drexler, Endoscope-tip interferometer for ultrahigh resolution frequency domain optical coherence tomography in mouse colon. Opt. Express 14, 1878–1887 (2006)

    Article  Google Scholar 

  66. A.R. Tumlinson, B. Považay, L.P. Hariri, J. McNally, A. Unterhuber, J.K. Barton, B. Hermann, H. Sattmann, W. Drexler, In vivo ultrahigh-resolution optical coherence tomography of mouse colon with an achromatized endoscope. J. Biomed. Opt. 11, 064003-064003-064008 (2006)

    Google Scholar 

  67. A.R. Tumlinson, L.P. Hariri, U. Utzinger, J.K. Barton, Miniature endoscope for simultaneous optical coherence tomography and laser-induced fluorescence measurement. Appl. Opt. 43, 113–121 (2004)

    Article  Google Scholar 

  68. T.S. Ralston, D.L. Marks, P.S. Carney, S.A. Boppart, Interferometric synthetic aperture microscopy. Nat. Phys. 3, 129–134 (2007)

    Article  Google Scholar 

  69. J. Mo, M. de Groot, J.F. de Boer, Focus-extension by depth-encoded synthetic aperture in optical coherence tomography. Opt. Express 21, 10048–10061 (2013)

    Article  Google Scholar 

  70. M. de Groot, C.L. Evans, J.F. de Boer, Self-interference fluorescence microscopy: three dimensional fluorescence imaging without depth scanning. Opt. Express 20, 15253–15262 (2012)

    Article  Google Scholar 

  71. L. Liu, C. Liu, W.C. Howe, C. Sheppard, N. Chen, Binary-phase spatial filter for real-time swept-source optical coherence microscopy. Opt. Lett. 32, 2375–2377 (2007)

    Article  Google Scholar 

  72. R.A. Leitgeb, M. Villiger, A.H. Bachmann, L. Steinmann, T. Lasser, Extended focus depth for Fourier domain optical coherence microscopy. Opt. Lett. 31, 2450–2452 (2006)

    Article  Google Scholar 

  73. Y. Yasuno, J.-I. Sugisaka, Y. Sando, Y. Nakamura, S. Makita, M. Itoh, T. Yatagai, Non-iterative numerical method for laterally super resolving Fourier domain optical coherence tomography. Opt. Express 14, 1006–1020 (2006)

    Article  Google Scholar 

  74. G. Liu, S. Yousefi, Z. Zhi, R.K. Wang, Automatic estimation of point-spread-function for deconvoluting out-of-focus optical coherence tomographic images using information entropy-based approach. Opt. Express 19, 18135–18148 (2011)

    Article  Google Scholar 

  75. T.S. Ralston, D.L. Marks, F. Kamalabadi, S.A. Boppart, Deconvolution methods for mitigation of transverse blurring in optical coherence tomography. IEEE Trans. Image Process. 14, 1254–1264 (2005)

    Article  Google Scholar 

  76. L. Yu, B. Rao, J. Zhang, J. Su, Q. Wang, S. Guo, Z. Chen, Improved lateral resolution in optical coherence tomography by digital focusing using two-dimensional numerical diffraction method. Opt. Express 15, 7634–7641 (2007)

    Article  Google Scholar 

  77. G. Liu, Z. Zhi, R.K. Wang, Digital focusing of OCT images based on scalar diffraction theory and information entropy. Biomed. Opt. Express 3, 2774–2783 (2012)

    Article  Google Scholar 

  78. Z. Jaroszewicz, A. Burvall, A.T. Friberg, Axicon-the most important optical element. Opt. Photonics News 16, 34–39 (2005)

    Article  Google Scholar 

  79. I. Golub, Fresnel axicon. Opt. Lett. 31, 1890–1892 (2006)

    Article  Google Scholar 

  80. Z. Ding, H. Ren, Y. Zhao, J.S. Nelson, Z. Chen, High-resolution optical coherence tomography over a large depth range with an axicon lens. Opt. Lett. 27, 243–245 (2002)

    Article  Google Scholar 

  81. K.-S. Lee, J.P. Rolland, Bessel beam spectral-domain high-resolution optical coherence tomography with micro-optic axicon providing extended focusing range. Opt. Lett. 33, 1696–1698 (2008)

    Article  Google Scholar 

  82. D. Lorenser, C. Christian Singe, A. Curatolo, D.D. Sampson, Energy-efficient low-Fresnel-number Bessel beams and their application in optical coherence tomography. Opt. Lett. 39, 548–551 (2014)

    Article  Google Scholar 

  83. M. Villiger, J. Goulley, M. Friedrich, A. Grapin-Botton, P. Meda, T. Lasser, R.A. Leitgeb, In vivo imaging of murine endocrine islets of Langerhans with extended-focus optical coherence microscopy. Diabetologia 52, 1599–1607 (2009)

    Article  Google Scholar 

  84. C. Blatter, B. Grajciar, C.M. Eigenwillig, W. Wieser, B.R. Biedermann, R. Huber, R.A. Leitgeb, Extended focus high-speed swept source OCT with self-reconstructive illumination. Opt. Express 19, 12141–12155 (2011)

    Article  Google Scholar 

  85. X. Yu, X. Liu, J. Gu, D. Cui, J.L.L. Wu, Depth extension and sidelobe suppression in optical coherence tomography using pupil filters. Opt. Express 22, 11 (2014)

    Google Scholar 

  86. H. Wang, F. Gan, High focal depth with a pure-phase apodizer. Appl. Opt. 40, 5658–5662 (2001)

    Article  Google Scholar 

  87. M. Gu, C. Sheppard, X. Gan, Image formation in a fiber-optical confocal scanning microscope. JOSA A 8, 1755–1761 (1991)

    Article  Google Scholar 

  88. L. Liu, F. Diaz, L. Wang, B. Loiseaux, J.-P. Huignard, C. Sheppard, N. Chen, Superresolution along extended depth of focus with binary-phase filters for the Gaussian beam. JOSA A 25, 2095–2101 (2008)

    Article  Google Scholar 

  89. D. Lorenser, X. Yang, D.D. Sampson, Ultrathin fiber probes with extended depth of focus for optical coherence tomography. Opt. Lett. 37, 1616–1618 (2012)

    Article  Google Scholar 

  90. C.J. Sheppard, S. Mehta, Three-level filter for increased depth of focus and Bessel beam generation. Opt. Express 20, 27212–27221 (2012)

    Article  Google Scholar 

  91. Y. Xu, J. Singh, C.J. Sheppard, N. Chen, Ultra long high resolution beam by multi-zone rotationally symmetrical complex pupil filter. Opt. Express 15, 6409–6413 (2007)

    Article  Google Scholar 

  92. L. Liu, J.A. Gardecki, S.K. Nadkarni, J.D. Toussaint, Y. Yagi, B.E. Bouma, G.J. Tearney, Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography. Nat. Med. 17, 1010–1014 (2011)

    Article  Google Scholar 

  93. E. Bousi, S. Timotheou, C. Pitris, Design of pupil filter for extended depth of focus and lateral superresolution in optical coherence tomography, in SPIE BiOS, (International Society for Optics and Photonics, 2014), 893435-893435-893437

    Google Scholar 

  94. L. Liu, K.K. Chu, G.H. Houser, B.J. Diephuis, Y. Li, E.J. Wilsterman, S. Shastry, G. Dierksen, S.E. Birket, M. Mazur, Method for quantitative study of airway functional microanatomy using micro-optical coherence tomography. PLoS ONE 8, e54473 (2013)

    Article  Google Scholar 

  95. L. Liu, S. Shastry, S. Byan-Parker, G. Houser, K. Chu, S.E. Birket, C.M. Fernandez, J. Gardecki, W. Grizzle, E. Wilsterman, An autoregulatory mechanism governing mucociliary transport is sensitive to mucus load. Am. J. Respir. Cell Mol. biol. (2014)

    Google Scholar 

  96. P. Tankam, A.P. Santhanam, K.-S. Lee, J. Won, C. Canavesi, J.P. Rolland, Parallelized multi–graphics processing unit framework for high-speed Gabor-domain optical coherence microscopy. J. Biomed. Opt. 19, 071410–071410 (2014)

    Article  Google Scholar 

  97. A. Ahmad, N.D. Shemonski, S.G. Adie, H.-S. Kim, W.-M.W. Hwu, P.S. Carney, S.A. Boppart, Real-time in vivo computed optical interferometric tomography. Nat. Photonics 7, 444–448 (2013)

    Article  Google Scholar 

  98. N. Weber, D. Spether, A. Seifert, H. Zappe, Highly compact imaging using Bessel beams generated by ultraminiaturized multi-micro-axicon systems. JOSA A 29, 808–816 (2012)

    Article  Google Scholar 

  99. I.E. Commission, IEC 60825-1, Safety of Laser Products—Part 1(2001)

    Google Scholar 

  100. D.J. Fechtig, T. Schmoll, B. Grajciar, W. Drexler, R.A. Leitgeb, Line-field parallel swept source interferometric imaging at up to 1 MHz. Opt. Lett. 39, 5333–5336 (2014)

    Article  Google Scholar 

  101. D.J. Fechtig, B. Grajciar, T. Schmoll, C. Blatter, R.M. Werkmeister, W. Drexler, R.A. Leitgeb, Line-field parallel swept source MHz OCT for structural and functional retinal imaging. Biomed. Opt. Express 6, 716–735 (2015)

    Article  Google Scholar 

  102. X. Yu, X. Liu, D. Cui, J. Gu, L. Liu, Ultrahigh-resolution optical coherence tomography with enhanced sensitivity and imaging depth using spectrally extended source. Opt. Express Submitted (2015)

    Google Scholar 

  103. X. Liu, X. Yu, H. Tang, D. Cui, M.R. Beotra, M.J. Girard, D. Sun, J. Gu, L. Liu, Spectrally encoded extended source optical coherence tomography. Opt. Lett. 39, 6803–6806 (2014)

    Article  Google Scholar 

  104. K.K. Chu, G.J. Ughi, L. Liu, G.J. Tearney, Toward clinical μOCT—a review of resolution-enhancing technical advances. Curr. Cardiovasc. Imaging Rep. 7, 1–8 (2014)

    Article  Google Scholar 

  105. M. Kashiwagi, L. Liu, K.K. Chu, C.-H. Sun, A. Tanaka, J.A. Gardecki, G.J. Tearney, Feasibility of the assessment of cholesterol crystals in human macrophages using micro optical coherence tomography. PLoS ONE 9, e102669 (2014)

    Article  Google Scholar 

  106. Y. Nomura, K.K. Chu, J.A. Gardecki, C.-H. Sun, L. Liu, E. Martinez-Martinez, E. Aikawa, G.J. Tearney, Innovations in microscopic imaging of atherosclerosis and valvular disease, in Cardiovascular Imaging (Springer, 2015), pp. 251–265

    Google Scholar 

  107. M.J. Gora, J.S. Sauk, R.W. Carruth, K.A. Gallagher, M.J. Suter, N.S. Nishioka, L.E. Kava, M. Rosenberg, B.E. Bouma, G.J. Tearney, Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure. Nat. Med. 19, 238–240 (2013)

    Article  Google Scholar 

  108. Z. Yaqoob, E. McDowell, J. Wu, C. Yang, Pump-probe optical coherence tomography using indocyanine green as a contrast agent, in Biomedical Optics 2006, (International Society for Optics and Photonics, 2006), 607904-607904-607908

    Google Scholar 

  109. E. Beaurepaire, L. Moreaux, F. Amblard, J. Mertz, Combined scanning optical coherence and two-photon-excited fluorescence microscopy. Opt. Lett. 24, 969–971 (1999)

    Article  Google Scholar 

  110. H. Tu, Y. Zhao, Y. Liu, Y.-Z. Liu, S. Boppart, Noise characterization of broadband fiber Cherenkov radiation as a visible-wavelength source for optical coherence tomography and two-photon fluorescence microscopy. Opt. Express 22, 20138–20143 (2014)

    Article  Google Scholar 

  111. Y. Yoon, W.H. Jang, P. Xiao, B. Kim, T. Wang, Q. Li, J.Y. Lee, E. Chung, K.H. Kim, In vivo wide-field reflectance/fluorescence imaging and polarization-sensitive optical coherence tomography of human oral cavity with a forward-viewing probe. Biomed. Opt. Express 6, 524–535 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

Jianhua Mo is supported in part by Soochow University, China (Startup grant: Jianhua Mo) and Natural Science Foundation of Jiangsu Province (SBK2014043010). Linbo Liu is supported in part by the Nanyang Technological University (Startup grant: Linbo Liu), National Research Foundation Singapore (NRF2013NRF-POC001-021), National Medical Research Council Singapore (NMRC/CBRG/0036/2013), Ministry of Education Singapore (MOE2013-T2-2-107).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linbo Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Mo, J., Yu, X., Liu, L. (2016). High Resolution Optical Coherence Tomography for Bio-Imaging. In: Olivo, M., Dinish, U. (eds) Frontiers in Biophotonics for Translational Medicine. Progress in Optical Science and Photonics, vol 3. Springer, Singapore. https://doi.org/10.1007/978-981-287-627-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-287-627-0_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-287-626-3

  • Online ISBN: 978-981-287-627-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics