Skip to main content

Raman Spectroscopy Techniques: Developments and Applications in Translational Medicine

  • Chapter
  • First Online:
  • 1325 Accesses

Part of the book series: Progress in Optical Science and Photonics ((POSP,volume 3))

Abstract

Raman spectroscopy is a powerful tool for measuring chemical properties of biological samples. This technique is based on inelastic scattering of light by molecules. The frequency shifts of the scattered light are related to the characteristic vibrational frequencies of the molecules, therefore the Raman spectrum is a “chemical fingerprint” of the sample. Raman spectroscopy has several features that make it attractive for translational medicine applications: (i) it requires no (or minimal) sample preparation; (ii) no labelling is required as diagnosis is based on the intrinsic chemical contrast of the sample; (iii) Raman spectroscopy uses light in the visible or near-infrared regions of the electromagnetic spectrum, where high performance microscopy and optoelectronics components have been developed during the last decades. Thus, recent advances in laser technologies, fibre optics, optical microscopes and light detectors, have brought Raman spectroscopy closer to real medical and clinical applications. This chapter reviews the main Raman spectroscopy techniques applied to translational medicine and provides an overview of various applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Z.W. Huang, A. McWilliams, H. Lui, D.I. McLean, S. Lam, H.S. Zeng, Near-infrared Raman spectroscopy for optical diagnosis of lung cancer. Int. J. Cancer 107, 1047–1052 (2003)

    Article  Google Scholar 

  2. N.D. Magee, J.R. Beattie, C. Carland, R. Davis, K. McManus, I. Bradbury, D.A. Fennell, P.W. Hamilton, M. Ennis, J.J. McGarvey, J.S. Elborn, Raman microscopy in the diagnosis and prognosis of surgically resected nonsmall cell lung cancer. J. Biomed. Opt. 15(2), 026015 (2010)

    Google Scholar 

  3. J. Ferlay, P. Autier, M. Boniol, M. Heanue, M. Colombet, P. Boyle, Estimates of the cancer incidence and mortality in Europe in 2006. Ann. Oncol. 18, 581–592 (2007)

    Article  Google Scholar 

  4. I. Ellis et al., Pathology reporting of breast disease A Joint Document Incorporating the Third Edition of the NHS Breast Screening Programme’s Guidelines for Pathology Reporting in Breast Cancer Screening and the Second Edition of The Royal College of Pathologists’ Minimum Dataset for Breast Cancer Histopathology (Sheffield, NHSBSP Publication, 2005)

    Google Scholar 

  5. A.S. Haka, K.E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R.R. Dasari, M.S. Feld, Diagnosing breast cancer by using Raman spectroscopy. Proc. Natl. Acad. Sci. USA 102, 12371–12376 (2005)

    Article  Google Scholar 

  6. J. Kneipp, T.B. Schut, M. Kliffen, M. Menke-Pluijmers, G. Puppels, Characterization of breast duct epithelia: a Raman spectroscopic study. Vib. Spectrosc. 32, 67–74 (2003)

    Article  Google Scholar 

  7. J. Smith, C. Kendall, A. Sammon, J. Christie-Brown, N. Stone, Raman spectral mapping in the assessment of axillary lymph nodes in breast cancer. Technol. Cancer Res. Treat. 2, 327–331 (2003)

    Article  Google Scholar 

  8. J. Horsnell, P. Stonelake, J. Christie-Brown, G. Shetty, J. Hutchings, C. Kendall, N. Stone, Raman spectroscopy-a new method for the intra-operative assessment of axillary lymph nodes. Analyst 135, 3042–3047 (2010)

    Article  Google Scholar 

  9. K. Kong, F. Zaabar, E. Rakha, I. Ellis, A. Koloydenko, I. Notingher, Towards intra-operative diagnosis of tumours during breast conserving surgery by selective-sampling Raman micro-spectroscopy. Phys. Med. Biol. 59, 6141–6152 (2014)

    Article  Google Scholar 

  10. M. Delhaye, P. Dhamelincourt, Raman microprobe and microscope with laser excitation. J. Raman Spectrosc. 3, 33–43 (1975)

    Article  Google Scholar 

  11. M. Hedegaard, C. Matthaus, S. Hassing, C. Krafft, M. Diem, J. Popp, Spectral unmixing and clustering algorithms for assessment of single cells by Raman microscopic imaging. Theor. Chem. Acc. 130, 1249–1260 (2011)

    Article  Google Scholar 

  12. A. Nijssen, T.C.B. Schut, F. Heule, P.J. Caspers, D.P. Hayes, M.H.A. Neumann, G.J. Puppels, Discriminating basal cell carcinoma from its surrounding tissue by Raman spectroscopy. J. Invest. Dermatol. 119, 64–69 (2002)

    Article  Google Scholar 

  13. M. Larraona-Puy, A. Ghita, A. Zoladek, W. Perkins, S. Varma, I.H. Leach, A.A. Koloydenko, H. Williams, I. Notingher, Development of Raman microspectroscopy for automated detection and imaging of basal cell carcinoma. J. Biomed. Opt. 14, 054031 (2009)

    Article  Google Scholar 

  14. K. Kong, C.J. Rowlands, S. Varma, W. Perkins, I.H. Leach, A.A. Koloydenko, H.C. Williams, I. Notingher, Diagnosis of tumors during tissue-conserving surgery with integrated autofluorescence and Raman scattering microscopy. Proc. Natl. Acad. Sci. USA 110, 15189–15194 (2013)

    Article  Google Scholar 

  15. C.J. de Grauw, C. Otto, J. Greve, Line-scan Raman microspectrometry for biological applications. Appl. Spectrosc. 51, 1607–1612 (1997)

    Article  Google Scholar 

  16. M. Okuno, H.-O. Hamaguchi, Multifocus confocal Raman microspectroscopy for fast multimode vibrational imaging of living cells. Opt. Lett. 35, 4096–4098 (2010)

    Article  Google Scholar 

  17. L. Kong, J. Chan, A Rapidly Modulated Multifocal Detection Scheme for Parallel Acquisition of Raman Spectra from a 2-D Focal Array. Anal. Chem. 86, 6604–6609 (2014)

    Article  Google Scholar 

  18. S.V. Christopher J. Rowlands, W. Perkins, I. Leach, H. Williams, I. Notingher, Rapid acquisition of Raman spectral maps through minimal sampling: applications in tissue imaging. J. Biophotonics 1, 1–10 (2012)

    Google Scholar 

  19. K. Kong, C.J. Rowlands, S. Varma, W. Perkins, I.H. Leach, A.A. Koloydenko, A. Pitiot, H.C. Williams, I. Notingher, Increasing the speed of tumour diagnosis during surgery with selective scanning Raman microscopy. J. Mol. Struct. 2014, 58–65 (1073)

    Google Scholar 

  20. K. Kong, C.J. Rowlands, H. Elsheikha, I. Notingher, Label-free molecular analysis of live Neospora caninum tachyzoites in host cells by selective scanning Raman micro-spectroscopy. Analyst 137, 4119–4122 (2012)

    Article  Google Scholar 

  21. R. Na, I.M. Stender, H.C. Wulf, Can autofluorescence demarcate basal cell carcinoma from normal skin? A comparison with protoporphyrin IX fluorescence. Acta Derm. Venereol. 81, 246–249 (2001)

    Article  Google Scholar 

  22. S. Takamori, K. Kong, S. Varma, I. Leach, H.C. Williams, I. Notingher, Optimization of multimodal spectral imaging for assessment of resection margins during Mohs micrographic surgery for basal cell carcinoma. Biomed. Opt. Express 6, 98–111 (2015)

    Article  Google Scholar 

  23. R.J. O’Callaghan, D.R. Bull, Combined morphological-spectral unsupervised image segmentation. IEEE Trans. Image Process. 14, 49–62 (2005)

    Article  Google Scholar 

  24. V.P.S. Naidu, Multi modal image segmentation (2006), http://www.mathworks.com/matlabcentral/fileexchange/28418-multi-modal-image-segmentation

  25. M. Moskovits, Surface-enhanced spectroscopy. Rev. Mod. Phys. 57, 783–826 (1985)

    Article  Google Scholar 

  26. M. Fleischmann, P.J. Hendra, A.J. McQuilla, Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 26, 163–166 (1974)

    Article  Google Scholar 

  27. D.L. Jeanmaire, R.P. Vanduyne, Surface Raman spectroelectrochemstry part 1. Heterocyclic, aromatic, and aliphatic-amines absorbed on anodized sliver electrode. J. Electroanal. Chem. 84, 1–20 (1977)

    Article  Google Scholar 

  28. D.A. Stuart, J.M. Yuen, N.S.O. Lyandres, C.R. Yonzon, M.R. Glucksberg, J.T. Walsh, R.P. Van Duyne, In vivo glucose measurement by surface-enhanced Raman spectroscopy. Anal. Chem. 78, 7211–7215 (2006)

    Article  Google Scholar 

  29. U.S. Dinish, F.C. Yaw, A. Agarwal, M. Olivo, Development of highly reproducible nanogap SERS substrates: comparative performance analysis and its application for glucose sensing. Biosens. Bioelectron. 26, 1987–1992 (2011)

    Article  Google Scholar 

  30. K.E. Shafer-Peltier, C.L. Haynes, M.R. Glucksberg, R.P. Van Duyne, Toward a glucose biosensor based on surface-enhanced Raman scattering. J. Am. Chem. Soc. 125, 588–593 (2003)

    Article  Google Scholar 

  31. J.M. Yuen, N.C. Shah, J.T. Walsh Jr, M.R. Glucksberg, R.P. Van Duyne, Transcutaneous glucose sensing by surface-enhanced spatially offset Raman spectroscopy in a rat model. Anal. Chem. 82, 8382–8385 (2010)

    Article  Google Scholar 

  32. D.S. Grubisha, R.J. Lipert, H.Y. Park, J. Driskell, M.D. Porter, Femtomolar detection of prostate-specific antigen: An immunoassay based on surface-enhanced Raman scattering and immunogold labels. Anal. Chem. 75, 5936–5943 (2003)

    Article  Google Scholar 

  33. S. Keren, C. Zavaleta, Z. Cheng, A. de la Zerda, O. Gheysens, S.S. Gambhir, Noninvasive molecular imaging of small living subjects using Raman spectroscopy. Proc. Natl. Acad. Sci. USA 105, 5844–5849 (2008)

    Article  Google Scholar 

  34. C.L. Zavaleta, B.R. Smith, I. Walton, W. Doering, G. Davis, B. Shojaei, M.J. Natan, S.S. Gambhir, Multiplexed imaging of surface enhanced Raman scattering nanotags in living mice using noninvasive Raman spectroscopy. Proc. Natl. Acad. Sci. USA 106, 13511–13516 (2009)

    Article  Google Scholar 

  35. C.L. Zavaleta, E. Garai, J.T.C. Liu, S. Sensarn, M.J. Mandella, D. Van de Sompel, S. Friedland, J. Van Dam, C.H. Contag, S.S. Gambhir, A Raman-based endoscopic strategy for multiplexed molecular imaging. Proc. Natl. Acad. Sci. USA 110, E2288–E2297 (2013)

    Article  Google Scholar 

  36. X. Qian, X.-H. Peng, D.O. Ansari, Q. Yin-Goen, G.Z. Chen, D.M. Shin, L. Yang, A.N. Young, M.D. Wang, S. Nie, In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat. Biotechnol. 26, 83–90 (2008)

    Article  Google Scholar 

  37. Y. Wang, S. Rauf, Y.S. Grewal, L.J. Spadafora, M.J.A. Shiddiky, G.A. Cangelosi, S. Schluecker, M. Trau, Duplex microfluidic SERS detection of pathogen antigens with nanoyeast single-chain variable fragments. Anal. Chem. 86, 9930–9938 (2014)

    Article  Google Scholar 

  38. U.S. Dinish, C.Y. Fu, K.S. Soh, R. Bhuvaneswari, A. Kumar, M. Olivo, Highly sensitive SERS detection of cancer proteins in low sample volume using hollow core photonic crystal fiber. Biosens. Bioelectron. 33, 293–298 (2012)

    Article  Google Scholar 

  39. U.S. Dinish, G. Balasundaram, Y.T. Chang, M. Olivo, Sensitive multiplex detection of serological liver cancer biomarkers using SERS-active photonic crystal fiber probe. J. Biophotonics 7, 956–965 (2014)

    Article  Google Scholar 

  40. U.S. Dinish, G. Balasundaram, Y.-T. Chang, M. Olivo, Actively targeted in vivo multiplex detection of intrinsic cancer biomarkers using biocompatible SERS nanotags. Sci. Rep. 4(4075), 1–7 (2014)

    Google Scholar 

  41. C.L. Evans, E.O. Potma, M. Puoris’haag, D. Cote, C.P. Lin, X.S. Xie, Chemical imaging of tissue in vivo with video-rate coherent anti-stokes Raman scattering microscopy. Proc. Natl. Acad. Sci. USA 102, 16807–16812 (2005)

    Article  Google Scholar 

  42. O. Uckermann, R. Galli, S. Tamosaityte, E. Leipnitz, K.D. Geiger, G. Schackert, E. Koch, G. Steiner, M. Kirsch, Label-free delineation of brain tumors by coherent anti-stokes Raman scattering microscopy in an orthotopic mouse model and human glioblastoma. PLoS ONE 9, 107115 (2014)

    Article  Google Scholar 

  43. N. Bergner, A. Medyukhina, K.D. Geiger, M. Kirsch, G. Schackert, C. Krafft, J. Popp, Hyperspectral unmixing of Raman micro-images for assessment of morphological and chemical parameters in non-dried brain tumor specimens. Anal. Bioanal. Chem. 405, 8719–8728 (2013)

    Article  Google Scholar 

  44. L. Gao, Z. Wang, F. Li, A.A. Hammoudi, M.J. Thrall, P.T. Cagle, S.T.C. Wong, Differential diagnosis of lung carcinoma with coherent anti-stokes Raman scattering imaging. Arch. Pathol. Lab. Med. 136, 1502–1510 (2012)

    Article  Google Scholar 

  45. J.X. Cheng, X.S. Xie, Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory, and applications. J. Phys. Chem. B 108, 827–840 (2004)

    Article  Google Scholar 

  46. Y. Yang, F. Li, L. Gao, Z. Wang, M.J. Thrall, S.S. Shen, K.K. Wong, S.T.C. Wong, Differential diagnosis of breast cancer using quantitative, label-free and molecular vibrational imaging. Biomed. Opt. Express 2, 2160–2174 (2011)

    Article  Google Scholar 

  47. S. Heuke, N. Vogler, T. Meyer, D. Akimov, F. Kluschke, H.J. Rowert-Huber, J. Lademann, B. Dietzek, J. Popp, Multimodal mapping of human skin. Brit. J. Dermatol. 169, 794–803 (2013)

    Article  Google Scholar 

  48. M.S. Bergholt, W. Zheng, K.Y. Ho, M. Teh, K.G. Yeoh, J.B.Y. So, A. Shabbir, Z.W. Huang, Fiber-optic Raman spectroscopy probes gastric carcinogenesis in vivo at endoscopy. J. Biophotonics 6, 49–59 (2013)

    Article  Google Scholar 

  49. J.C.C. Day, R. Bennett, B. Smith, C. Kendall, J. Hutchings, G.M. Meaden, C. Born, S. Yu, N. Stone, A miniature confocal Raman probe for endoscopic use. Phys. Med. Biol. 54, 7077–7087 (2009)

    Article  Google Scholar 

  50. J.C.C. Day, N. Stone, A subcutaneous Raman needle probe. Appl. Phys. Lett. 67, 349–354 (2013)

    Google Scholar 

  51. M.G. Shim, B.C. Wilson, E. Marple, M. Wach, Study of fiber-optic probes for in vivo medical Raman spectroscopy. Appl. Spectrosc. 53, 619–627 (1999)

    Article  Google Scholar 

  52. S. Koljenovic, T.C.B. Schut, R. Wolthuis, B. de Jong, L. Santos, P.J. Caspers, J.M. Kros, G.J. Puppels, Tissue characterization using high wave number Raman spectroscopy. J. Biomed. Opt. 10, 031116 (2005)

    Article  Google Scholar 

  53. S. Koljenovic, T.C.B. Schut, R. Wolthuis, A.J.P.E. Vincent, G. Hendriks-Hagevi, L. Santos, J.M. Kros, G.J. Puppels, Raman spectroscopic characterization of porcine brain tissue using a single fiber-optic probe. Anal. Chem. 79, 557–564 (2007)

    Article  Google Scholar 

  54. M. Sharma, E. Marple, J. Reichenberg, J.W. Tunnell, Design and characterization of a novel multimodal fiber-optic probe and spectroscopy system for skin cancer applications. Rev. Sci. Instrum. 85, 083101 (2014)

    Article  Google Scholar 

  55. J.S. Soares, I. Barman, N.C. Dingari, Z. Volynskaya, W. Liu, N. Klein, D. Plecha, R.R. Dasari, M. Fitzmaurice, Diagnostic power of diffuse reflectance spectroscopy for targeted detection of breast lesions with microcalcifications. Proc. Natl. Acad. Sci. USA 110, 471–476 (2013)

    Article  Google Scholar 

  56. R. Cicchi, S. Anand, S. Rossari, A. Sturiale, F. Giordano, V. De Giorgi, V. Maio, D. Massi, G. Nesi, A.M. Buccoliero, F. Tonelli, R. Guerrini, N. Pimpinelli, F.S. Pavone, Multimodal fiber probe spectroscopy for tissue diagnostics applications: a combined Raman-fluorescence approach. P. Soc. Photo-Opt. Ins. 8939 (2014)

    Google Scholar 

  57. L.F. Santos, R. Wolthuis, S. Koljenovic, R.M. Almeida, G.J. Puppels, Fiber-optic probes for in vivo Raman spectroscopy in the high-wavenumber region. Anal. Chem. 77, 6747–6752 (2005)

    Article  Google Scholar 

  58. M. Kirsch, G. Schackert, R. Salzer, C. Krafft, Raman spectroscopic imaging for in vivo detection of cerebral brain metastases. Anal. Bioanal. Chem. 398, 1707–1713 (2010)

    Article  Google Scholar 

  59. A.S. Haka, Z. Volynskaya, J.A. Gardecki, J. Nazemi, R. Shenk, N. Wang, R.R. Dasari, M. Fitzmaurice, M.S. Feld, Diagnosing breast cancer using Raman spectroscopy: prospective analysis. J. Biomed. Opt. 14, 054023 (2009)

    Article  Google Scholar 

  60. M.S. Bergholt, W. Zheng, K.Y. Ho, M. Teh, K.G. Yeoh, J.B.Y. So, A. Shabbir, Z. Huang, Fiberoptic confocal Raman spectroscopy for real-time in vivo diagnosis of dysplasia in Barrett’s esophagus. Gastroenterology 146, 27–32 (2014)

    Article  Google Scholar 

  61. J. Wang, M.S. Bergholt, W. Zheng, Z. Huang, Development of a beveled fiber-optic confocal Raman probe for enhancing in vivo epithelial tissue Raman measurements at endoscopy. Opt. Lett. 38, 2321–2323 (2013)

    Article  Google Scholar 

  62. C.A. Lieber, S.K. Majumder, D.L. Ellis, D.D. Billheimer, A. Mahadevan-Jansen, In vivo nonmelanoma skin cancer diagnosis using Raman microspectroscopy. Laser Surg. Med. 40, 461–467 (2008)

    Article  Google Scholar 

  63. H. Lui, J. Zhao, D.I. McLean, H. Zeng, Real-time Raman spectroscopy for in vivo skin cancer diagnosis. Cancer Res. 72, 2491–2500 (2012)

    Article  Google Scholar 

  64. P. Matousek, I.P. Clark, E.R.C. Draper, M.D. Morris, A.E. Goodship, N. Everall, M. Towrie, W.F. Finney, A.W. Parker, Subsurface probing in diffusely scattering media using spatially offset Raman spectroscopy. Appl. Spectrosc. 59, 393–400 (2005)

    Article  Google Scholar 

  65. R. Baker, P. Matousek, K.L. Ronayne, A.W. Parker, K. Rogers, N. Stone, Depth profiling of calcifications in breast tissue using picosecond Kerr-gated Raman spectroscopy. Analyst 132, 48–53 (2007)

    Article  Google Scholar 

  66. P. Matousek, N. Stone, Prospects for the diagnosis of breast cancer by noninvasive probing of calcifications using transmission Raman spectroscopy. J. Biomed. Opt. 12, 024008 (2007)

    Article  Google Scholar 

  67. P. Matousek, N. Stone, Emerging concepts in deep Raman spectroscopy of biological tissue. Analyst 134, 1058–1066 (2009)

    Article  Google Scholar 

  68. N. Stone, K. Faulds, D. Graham, P. Matousek, Prospects of deep Raman spectroscopy for noninvasive detection of conjugated surface enhanced resonance Raman scattering nanoparticles buried within 25 mm of mammalian tissue. Anal. Chem. 82, 3969–3973 (2010)

    Article  Google Scholar 

  69. N. Stone, M. Kerssens, G.R. Lloyd, K. Faulds, D. Graham, P. Matousek, Surface enhanced spatially offset Raman spectroscopic (SESORS) imaging—the next dimension. Chem. Sci. 2, 776–780 (2011)

    Article  Google Scholar 

  70. P. Matousek, A.W. Parker, Bulk Raman analysis of pharmaceutical tablets. Appl. Spectrosc. 60, 1353–1357 (2006)

    Article  Google Scholar 

  71. N. Stone, P. Matousek, Advanced transmission Raman spectroscopy: a promising tool for breast disease diagnosis. Cancer Res. 68, 4424–4430 (2008)

    Article  Google Scholar 

  72. R. Baker, K.D. Rogers, N. Shepherd, N. Stone, New relationships between breast microcalcifications and cancer. Br. J. Cancer 103, 1034–1039 (2010)

    Article  Google Scholar 

  73. M.M. Kerssens, P. Matousek, K. Rogers, N. Stone, Towards a safe non-invasive method for evaluating the carbonate substitution levels of hydroxyapatite (HAP) in micro-calcifications found in breast tissue. Analyst 135, 3156–3161 (2010)

    Article  Google Scholar 

  74. I. Rehman, R. Smith, L.L. Hench, W. Bonfield, Structural evaluation of human and sheep bone and comparison with synthetic hydroxyapatite by FT-Raman spectroscopy. J. Biomed. Mater. Res. 29, 1287–1294 (1995)

    Article  Google Scholar 

  75. J.G. Kerns, P.D. Gikas, K. Buckley, A. Shepperd, H.L. Birch, I. McCarthy, J. Miles, T.W.R. Briggs, R. Keen, A.W. Parker, P. Matousek, A.E. Goodship, Evidence from Raman spectroscopy of a putative link between inherent bone matrix chemistry and degenerative Joint disease. Arthrit Rheum-Arthr 66, 1237–1246 (2014)

    Article  Google Scholar 

  76. B.R. McCreadie, M.D. Morris, T.-C. Chen, D.S. Rao, W.F. Finney, E. Widjaja, S.A. Goldstein, Bone tissue compositional differences in women with and without osteoporotic fracture. Bone 39, 1190–1195 (2006)

    Article  Google Scholar 

  77. B. Sharma, K. Ma, M.R. Glucksberg, R.P. Van Duyne, Seeing through bone with surface-enhanced spatially offset Raman spectroscopy. J. Am. Chem. Soc. 135, 17290–17293 (2013)

    Article  Google Scholar 

  78. D.M. Good, V. Thongboonkerd, J. Novak, J.-L. Bascands, J.P. Schanstra, J.J. Coon, A. Dominiczak, H. Mischak, Body fluid proteomics for biomarker discovery: lessons from the past hold the key to success in the future. J. Proteome Res. 6, 4549–4555 (2007)

    Article  Google Scholar 

  79. M.D. Perkins, D.R. Bell, Working without a blindfold: the critical role of diagnostics in malaria control. Malaria J. 7 (2008)

    Google Scholar 

  80. A.J. Hobro, A. Konishi, C. Coban, N.I. Smith, Raman spectroscopic analysis of malaria disease progression via blood and plasma samples. Analyst 138, 3927–3933 (2013)

    Article  Google Scholar 

  81. U. Neugebauer, S. Trenkmann, T. Bocklitz, D. Schmerler, M. Kiehntopf, J. Popp, Fast differentiation of SIRS and sepsis from blood plasma of ICU patients using Raman spectroscopy. J. Biophotonics 7, 232–240 (2014)

    Article  Google Scholar 

  82. I. Taleb, G. Thiefin, C. Gobinet, V. Untereiner, B. Bernard-Chabert, A. Heurgue, C. Truntzer, P. Hillon, M. Manfait, P. Ducoroy, G.D. Sockalingum, Diagnosis of hepatocellular carcinoma in cirrhotic patients: a proof-of-concept study using serum micro-Raman spectroscopy. Analyst 138, 4006–4014 (2013)

    Article  Google Scholar 

  83. S. Feng, R. Chen, J. Lin, J. Pan, G. Chen, Y. Li, M. Cheng, Z. Huang, J. Chen, H. Zeng, Nasopharyngeal cancer detection based on blood plasma surface-enhanced Raman spectroscopy and multivariate analysis. Biosens. Bioelectron. 25, 2414–2419 (2010)

    Article  Google Scholar 

  84. S. Feng, R. Chen, J. Lin, J. Pan, Y. Wu, Y. Li, J. Chen, H. Zeng, Gastric cancer detection based on blood plasma surface-enhanced Raman spectroscopy excited by polarized laser light. Biosens. Bioelectron. 26, 3167–3174 (2011)

    Article  Google Scholar 

  85. S. Feng, D. Lin, J. Lin, B. Li, Z. Huang, G. Chen, W. Zhang, L. Wang, J. Pan, R. Chen, H. Zeng, Blood plasma surface-enhanced Raman spectroscopy for non-invasive optical detection of cervical cancer. Analyst 138, 3967–3974 (2013)

    Article  Google Scholar 

  86. T.J. Harvey, E.C. Faria, A. Henderson, E. Gazi, A.D. Ward, N.W. Clarke, M.D. Brown, R.D. Snook, P. Gardner, Spectral discrimination of live prostate and bladder cancer cell lines using Raman optical tweezers. J. Biomed. Opt. 13, 064004 (2008)

    Article  Google Scholar 

  87. K.V. Kong, W.K. Leong, Z. Lam, T. Gong, D. Goh, W.K.O. Lau, M. Olivo, A rapid and label-free SERS detection method for biomarkers in clinical biofluids. Small 10, 5030–5034 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioan Notingher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Kong, K., Notingher, I. (2016). Raman Spectroscopy Techniques: Developments and Applications in Translational Medicine. In: Olivo, M., Dinish, U. (eds) Frontiers in Biophotonics for Translational Medicine. Progress in Optical Science and Photonics, vol 3. Springer, Singapore. https://doi.org/10.1007/978-981-287-627-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-287-627-0_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-287-626-3

  • Online ISBN: 978-981-287-627-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics