Skip to main content

Monitoring Free Gas In Situ for Medical Diagnostics Using Laser Spectroscopic Techniques

  • Chapter
  • First Online:
Frontiers in Biophotonics for Translational Medicine

Part of the book series: Progress in Optical Science and Photonics ((POSP,volume 3))

  • 1280 Accesses

Abstract

The development of fast, non-invasive and accurate diagnostics is of great importance in the medical field. Lasers, and optical spectroscopy and imaging techniques provide many new possibilities. Most frequently broad-band spectroscopic techniques are used for studying tissue constituents. Instead, the development of novel methods for monitoring free gas in situ using narrow-band laser spectroscopic techniques in the diagnostics of common infectious diseases and for the surveillance of pre-term infants is presented in this chapter. The gas in scattering media absorption spectroscopy (GASMAS) technique is used, relying on the fact, that the absorptive imprints of free gases are typically 10,000 times narrower than those due to the tissue itself. The work is in a translational process aiming at better diagnostics of common sinus and middle-ear infections (sinusitis and otitis) and for the management of the respiratory distress syndrome and necrotizing enterocolitis in premature infants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Vo-Dinh (ed.), Biomedical Photonics Handbook (CRC Press, Boca Raton, Florida, 2003)

    Google Scholar 

  2. J.G. Fujimoto, D.L. Farkas, Biomedical Optical Imaging (Oxford University Press, Oxford, 2009)

    MATH  Google Scholar 

  3. J. Popp, V.V. Tuchin, A. Chiou, S.H. Heinemann, Eds, Handbook of Biophotonics, Volumes 1–3 (Wiley-VCH 2011)

    Google Scholar 

  4. D.A. Boas, C. Pitris, N. Ramanujam, Handbook of Biomedical Optics (CRC Press, 2011)

    Google Scholar 

  5. H. Jelinkova, Ed. Lasers for Medical Application (Woodhead Publishing, 2013)

    Google Scholar 

  6. S. Svanberg, Laser spectroscopy in medical diagnostics, Chap. 10 in [5], pp. 286–324

    Google Scholar 

  7. K. Svanberg, N. Bendsoe, Photodynamic therapy for human malignancies with superficial and interstitial illumination, Chap. 25 in [5], pp. 760–778

    Google Scholar 

  8. S. Svanberg, LIDAR, Chap. 13.3 in F. Träger, Ed., Springer Handbook of Lasers and Optics, 2nd Edition (Springer, Heidelberg 2012), p. 1146

    Google Scholar 

  9. M.R. McCurdy, Y. Bakhirkin, G. Wysocki, R. Lewicki, F.K. Tittel, Recent advances of laser-spectroscopy-based techniques for applications in breath analysis. J. Breath Res. 1, 014001/1-12 (2007)

    Google Scholar 

  10. C. Wang, P. Sahay, Breath analysis using laser spectroscopic techniques: breath biomarkers, spectral fingerprints, and detection limits. Sensors 9, 8230 (2009)

    Article  Google Scholar 

  11. S.M. Cristescu, S.T. Persijn, S. te Lintel Hekkert, F.J.M. Harren, Laser-based systems for trace gas detection in life sciences. Appl. Phys. B 92, 343 (2008)

    Article  Google Scholar 

  12. D.D. Arslanov, M. Spunei, J. Mandon, S.M. Cristescu, S.T. Persijn, F.J.M. Harren, Optical parametric oscillator based infrared spectroscopy for sensitive molecular gas sensing. Laser Photonics Rev. 7, 188 (2013)

    Article  Google Scholar 

  13. M. Sjöholm, G. Somesfalean, J. Alnis, S. Andersson-Engels, S. Svanberg, Analysis of gas dispersed in scattering solids and liquids. Opt. Lett. 26, 16–18 (2001)

    Article  Google Scholar 

  14. M. Andersson, R. Grönlund, L. Persson, M. Sjöholm, K. Svanberg, S. Svanberg, Laser spectroscopy of gas in scattering media at scales ranging from kilometers to millimeters. Laser Phys. 17, 893 (2007)

    Article  Google Scholar 

  15. S. Svanberg, Analysis of trapped gas—Gas in scattering media absorption spectroscopy. Laser Phys. 20, 68 (2010)

    Article  Google Scholar 

  16. S. Svanberg, Gas in scattering media absorption spectroscopy—from basic studies to medical applications. Lasers Photonics Rev. 7, 779 (2013)

    Article  Google Scholar 

  17. R. Saiki, S. Scharf, F. Faloona, K. Mullis, G. Horn, H. Erlich et al., Enzymatic amplification of beta-globin genomic sequences and restriction analysis for diagnosis of sickle cell anemia. Science 230, 1350 (1985)

    Article  Google Scholar 

  18. D. Fredricks, D. Relman, Application of polymerase chain reaction to the diagnosis of infectious diseases. Clin. Infect. Dis. 29, 475 (1999)

    Article  Google Scholar 

  19. D.Y. Graham, J.T. Schwartz, G.D. Cain, F. Gyorkey, Prospective evaluation of biopsy number in the diagnosis of esophageal and gastric carcinoma. Gastroenterol. 82, 228 (1982)

    Google Scholar 

  20. H. Sue-Ling, I. Martin, J. Griffith, D.C. Ward, P. Quirke, M.F. Dixon, A.T. Axon, M.J. McMahon, D. Johnston, Early gastric cancer: 46 cases treated in one surgical department. Gut 33, 1318 (1992)

    Article  Google Scholar 

  21. H. Amin, L. Gilmour, S. Graham, X. Paterson-Brown, J. Terrace, T.J. Crofts, Gastric adenocarcinoma missed at endoscopy. J. R. Coll. Surg. Edinb. 47, 681 (2002)

    Google Scholar 

  22. S. Svanberg, Tissue diagnostics using lasers, in Lasers in Medicine, Chap. 6, ed. by R.W. Waynant (CRC Press, Baton Rouge 2002) pp. 135–169

    Google Scholar 

  23. S. Andersson-Engels, K. Svanberg, S. Svanberg, Fluorescence imaging in medical diagnostics, Chap. 10 in [1], pp. 265–305

    Google Scholar 

  24. S. Fickweiler, R.C. Krieg, H.G. Stepp, F. Hofstaedter, R. Knuechel, 5-aminolevulinic acid (ALA) mediated photodynamic therapy of bladder cancer cell lines. Proc. SPIE 3563, 143 (1999)

    Article  Google Scholar 

  25. W. Drexler, J.G. Fujimoto (eds.), Optical Coherence Tomography: Technology and Applications (Springer, 2008)

    Google Scholar 

  26. J.P. Payne, J.P. Severinghaus (eds.), Pulse Oximetry (Springer, Heidelberg, 1986)

    Google Scholar 

  27. P. Rolfe, In vivo near-infrared spectroscopy. Ann. Rev. Biomed. Eng. 2, 715 (2000)

    Article  Google Scholar 

  28. E. Krite Svanberg, P. Wollmer, S. Andersson-Engels, J. Ã…keson, Physiological influence of basic perturbations assessed by non-invasive optical techniques in humans. Appl. Physiol. Nutr. Metab. 36, 946 (2011)

    Article  Google Scholar 

  29. C. Bachert, K. Hormann, R. Mosges, G. Rasp, H. Riechelmann, R. Muller, H. Luckhaupt, B.A. Stuck, C. Rudack, An update on the diagnosis and treatment of sinusitis and nasal polyposis. Allergy 58, 176 (2003)

    Article  Google Scholar 

  30. W. Fokkens, V. Lund, J. Mullol, European position paper on rhinosinusitis and nasal polyps 2007. Rhinol. Suppl. 20, 1–136 (2007)

    Google Scholar 

  31. I. Brook, Microbiology of sinusitis. Proc. Am. Thorac. Soc. 8, 90 (2011)

    Article  Google Scholar 

  32. G.H. McCracken, Treatment of acute otitis media in an era of increasing microbial resistance. Pediatr. Infect. Dis. J. 17, 576 (1998)

    Article  Google Scholar 

  33. S.F. Dowell, J.C. Butler, S.G. Giebink et al., Acute otitis media: management and surveillance in an era of pneumococcal resistance—a report from the drug-resistant streptococcus pneumonia therapeutic working group. Pediatr. Infect. Dis. J. 18, 1 (1999)

    Article  Google Scholar 

  34. H. Goossens, M. Ferech, R. van der Stichele, M. Elseviers, ESAC project group. Outpatient antibiotic use in Europe and association with resistance: a cross-national database study, Lancet 365, 579 (2005)

    Google Scholar 

  35. P. Lee, Chief consultant at the EurAm clinic (Guangzhou, China (private communication), 2014)

    Google Scholar 

  36. S. Maxson, T. Yamauchi, Acute otitis media. Pediatr. Rev. 17(6), 191–195 (1996)

    Article  Google Scholar 

  37. K. Ramakrishnan, R.A. Sparks, W.E. Berryhill, Diagnosis and treatment of otitis media. Am. Fam. Physician 76, 1650 (2007)

    Google Scholar 

  38. A.S. Lieberthal, A.E. Carroll, T. Chonmaitree et al., The diagnosis and management of acute otitis media. Pediatrics 131, 964 (2013)

    Article  Google Scholar 

  39. R.M. Rosenfeld, D. Kay, Natural history of untreated otitis media. Laryngoscope 113, 1645 (2003)

    Article  Google Scholar 

  40. M.M. Slattery, J. Morrison, Preterm delivery. Lancet 360, 1489 (2002)

    Article  Google Scholar 

  41. R.L. Goldenberg et al., Epidemiology and causes of preterm birth. Lancet 371, 75 (2008)

    Article  Google Scholar 

  42. L.B. Ware, M.A. Matthay, Medical progress – The acute respiratory distress syndrome. New Engl. J. Med. 342, 1334 (2000)

    Article  Google Scholar 

  43. D.G. Sweet et al., European consensus guidelines on the management of neonatal respiratory distress syndrome in preterm infants—2013 update. Neonatol. 103, 353 (2013)

    Article  Google Scholar 

  44. E.J. Hall, Lessons we have learned from our children: cancer risks from diagnostic radiology. Pediatr. Radiol. 32, 700 (2002)

    Article  Google Scholar 

  45. R.M. Kliegman, A.A. Fanaroff, Nectrotizing enterocolitis. New Engl. J. Med. 310, 1093 (1984)

    Article  Google Scholar 

  46. A.M. Kosloske, Epidemiology of necrotizing enterocolitis. Acta Paediatr. Suppl. 396, 2 (1994)

    Article  Google Scholar 

  47. J. Pietz, B. Achanti, L. Lilien, E. Clifford Stepka, S. Ken Mehta, Prevention of necrotitizing enterocolitis in preterm infants: a 20-year experience. Pediatrics 119, 164 (2006)

    Article  Google Scholar 

  48. S. Svanberg, Differential absorption lidar (DIAL), in Air Monitoring by Spectroscopic Techniques, M. Sigrist (ed.), (Wiley, N.Y. 1994), p. 85

    Google Scholar 

  49. G. Somesfalean, M. Sjöholm, J. Alnis, C. af Klinteberg, S. Andersson-Engels, S. Svanberg, Concentration measurement of gas imbedded in scattering media employing time and spatially resolved techniques. Appl. Optics 41, 3538–3544 (2002)

    Article  Google Scholar 

  50. L. Persson, M. Lewander, M. Andersson, K. Svanberg, S. Svanberg, Simultaneous detection of molecular oxygen and water vapor in the tissue optical window using tunable diode laser spectroscopy. Appl. Opt. 47, 2028 (2008)

    Article  Google Scholar 

  51. M. Lewander, Z.G. Guan, K. Svanberg, S. Svanberg, T. Svensson, Clinical system for non-invasive in situ monitoring of gases in the human paranasal sinuses. Opt. Express 13, 10849 (2009)

    Article  Google Scholar 

  52. L. Persson, M. Andersson, F. Andersson, S. Svanberg, Approach to optical interference fringe reduction in diode-laser-based absorption spectroscopy. Appl. Phys. B 87, 523 (2007)

    Article  Google Scholar 

  53. S. Svanberg, Atomic and Molecular Spectroscopy—Basic Aspects and Practical Applications, 4th edn. (Springer, Heidelberg, 2004)

    Book  Google Scholar 

  54. A.L. Buck, New equations for computing vapor pressure and enhancement factor. J. Appl. Meteorol. 20, 1527–1532 (1996)

    Article  Google Scholar 

  55. L. Mei, G. Somesfalean, S. Svanberg, Pathlength determination for gas in scattering media absorption spectroscopy. Sensors 14, 3871 (2014)

    Article  Google Scholar 

  56. P. Lundin, L. Mei, S. Andersson-Engels, S. Svanberg, Laser spectroscopic gas concentration measurements in situations with unknown optical path length enabled by absorption line shape analysis. Appl. Phys. Lett. 103, 034105 (2013)

    Article  Google Scholar 

  57. J. Alnis, B. Anderson, M. Sjöholm, G. Somesfalean, S. Svanberg, Laser spectroscopy on free molecular oxygen dispersed in wood materials. Appl. Phys. B 77, 691 (2003)

    Article  Google Scholar 

  58. M. Andersson, L. Persson, M. Sjöholm, S. Svanberg, Spectroscopic studies of wood-drying processes. Opt. Express 14, 3641 (2006)

    Article  Google Scholar 

  59. M. Karlsson, P. Lundin, L. Cocola, G. Somesfalean, S. Svanberg, I. Bargigia, C. D´Andrea, A. Nevin, A. Farina, A. Pifferi, R. Cubeddu, M. Orlandi, Non-invasive optical diagnosis of gases in wood, Shipwrecks 2011, Ed. M. Ek, ISBN 978-91-7501-142-4 (Vasa Museum, Stockholm 2011) p. 176

    Google Scholar 

  60. I. Bargigia, A. Nevin, A. Farina, A. Pifferi, C. D’Andrea, M. Karlsson, P. Lundin, G. Somesfalean, S. Svanberg, Diffuse optical techniques applied to wood characterization. J. Near Infrared Spectr. 21, 259 (2013)

    Article  Google Scholar 

  61. T. Svensson, Z. Shen, Laser spectroscopy of gas confined in nanoporous materials. Appl. Phys. Lett. 96, 021107 (2010)

    Article  Google Scholar 

  62. T. Svensson, M. Lewander, S. Svanberg, Laser absorption spectroscopy of water vapor confined in nanoporous alumina: wall collision line broadening and gas diffusion dynamics. Opt. Express 18, 16460 (2010)

    Article  Google Scholar 

  63. C.T. Xu, M. Lewander, S. Andersson-Engels, E. Adolfsson, T. Svensson, S. Svanberg, Wall collision line broadening at reduced pressures: towards non-destructive characterization of nanoporous materials. Phys. Rev. A 84, 042705 (2011)

    Article  Google Scholar 

  64. T. Svensson, E. Adolfsson, M. Burresi, R. Savo, C.T. Xu, D.S. Wiersma, S. Svanberg, Pore size assessment by high-resolution laser spectroscopy of wall collision line broadening of confined gases: experiments of strongly scattering nanoporous zirconia ceramics with fine-tuned pore sizes, Appl. Phys. B. doi:10.1007/S00340-012-5011-s (2012)

  65. T. Svensson, E. Adolfsson, M. Lewander, C.T. Xu, S. Svanberg, Disordered, strongly scattering porous materials as miniature multi-pass gas cells. Phys. Rev. Lett. 107, 143901 (2011)

    Article  Google Scholar 

  66. X.T. Lou, C.T. Xu, S. Svanberg, G. Somesfalean, Multi-mode diode laser correlation spectroscopy using gas-filled porous materials for pathlength enhancement. Appl. Phys. B 109, 453 (2012)

    Article  Google Scholar 

  67. T. Svensson, L. Persson, M. Andersson, S. Svanberg, S. Andersson-Engels, J. Johansson, S. Folestad, Noninvasive characterization of pharmaceutical solids by diode laser oxygen spectroscopy. Appl. Spectr. 61, 784 (2007)

    Article  Google Scholar 

  68. T. Svensson, M. Andersson, L. Rippe, S. Svanberg, S. Andersson-Engels, J. Johansson, S. Folestad, VCSEL-based oxygen spectroscopy for structural analysis of pharmaceutical solids. Appl. Phys. B 90, 345 (2008)

    Article  Google Scholar 

  69. T. Svensson, E. Alerstam, J. Johansson, Stefan Andersson-Engels, Optical porosimetry and investigations of the porosity experienced by light interacting with porous media. Opt. Lett. 35, 1740–1742 (2010)

    Article  Google Scholar 

  70. L. Persson, B. Anderson, M. Andersson, M. Sjöholm, S. Svanberg, Studies of gas exchange in fruits using laser spectroscopic techniques, in Proceedings of the Fruitic 05, Information and Technology for Sustainable Fruit and Vegetable Production, 543–552, Montpellier (September 2005)

    Google Scholar 

  71. L. Persson, H. Gao, M. Sjöholm, S. Svanberg, Diode laser absorption spectroscopy for studies of gas exchange in fruits. Lasers Opt. Engineering 44, 687 (2006)

    Article  Google Scholar 

  72. U. Tylewicz, P. Lundin, L. Cocola, P. Rocculi, S. Svanberg, P. Dejmek, F. GÏŒmez Galindo, Gas in scattering media absorption spectroscopy (GASMAS) detected persistent vacuum in apple tissue after vacuum impregnation, Food Biophys. 10, 1483-011-9239-7 (2011)

    Google Scholar 

  73. H. Zhang, J. Huang, T.Q. Li, X.X. Wu, S. Svanberg, K. Svanberg, Studies for tropical fruit ripening using three different spectroscopic techniques. J. Biomed. Opt. 19, 067001 (2014)

    Article  Google Scholar 

  74. M.L.A.T.M. Hertog, H.W. Peppelenbos, R.G. Evelo, L.M.M. Tijskens, Postharvest. Technol. Biol. 14, 335 (1998)

    Article  Google Scholar 

  75. R.M. Beaudry, Postharvest Biol. Technol. 15, 293 (1999)

    Article  Google Scholar 

  76. M. Lewander, Z.G. Guan, L. Persson, A. Olsson, S. Svanberg, Food monitoring based on diode laser gas spectroscopy. Appl. Phys. B 93, 619 (2008)

    Article  Google Scholar 

  77. P. Lundin, L. Cocola, A. Olsson, S. Svanberg, Non-intrusive headspace gas measurements by laser spectroscopy—Performance validated by an intrusive reference sensor, J. Food Eng. http://dx.doi.org/10.1016/j.jfoodeng.2012.03.008 (2012)

  78. M. Lewander, T. Svensson, S. Svanberg, A. Olsson, Non intrusive measurements of food and packaging quality. Packag. Technol. Sci. 24, 271 (2011)

    Article  Google Scholar 

  79. I.L. Church, A.L. Parsons, Modied atmosphere packaging technology—A review. J. Sci. Food Agri. 67, 143 (1995)

    Article  Google Scholar 

  80. C.A. Phillips, Review: Modified atmosphere packaging and its effects on the microbiological quality and safety of produce. Int. J. Food Sci. & Technol. 31, 463 (1996)

    Article  Google Scholar 

  81. L. Persson, K. Svanberg, S. Svanberg, On the potential for human sinus cavity diagnostics using diode laser gas spectroscopy. Appl. Phys. B 82, 313 (2006)

    Article  Google Scholar 

  82. L. Persson, E. Kristensson, L. Simonsson, S. Svanberg, Monte Carlo simulations of optical human sinusitis diagnostics. J. Biomedical Optics 12, 054002 (2007)

    Article  Google Scholar 

  83. H. Zhang, J. Huang, T.Q. Li, S. Svanberg, K. Svanberg, Optical detection of middle ear infection using spectroscopic techniques—Phantom experiments, J. Biomed. Opt., doi: 10.1117/.jbo (2015)

  84. L. Persson, M. Andersson, T. Svensson, K. Svanberg, S. Svanberg, Non-intrusive optical study of gas and its exchange in human maxillary sinuses. SPIE 6628, 662804 (2007)

    Article  Google Scholar 

  85. L. Persson, M. Andersson, M. Cassel-Engquist, K. Svanberg, S. Svanberg, Gas monitoring in human sinuses using tunable diode laser spectroscopy, J. Biomed. Opt. 12, (5) (2007)

    Google Scholar 

  86. M. Lewander, S. Lindberg, T. Svensson, R. Siemund, K. Svanberg, S. Svanberg, Clinical study assessing information on the maxillary and frontal sinuses using diode laser gas spectroscopy. Rhinology 50, 26 (2011)

    Article  Google Scholar 

  87. J. Huang, H. Zhang, T.Q L.i, H.Y. Lin, K. Svanberg, S. Svanberg, Assessment of human sinus cavity air volume using tunable diode laser spectroscopy, with application to sinusitis diagnostics, to appear (2015)

    Google Scholar 

  88. S. Lindberg, M. Lewander, T. Svensson, R. Siemund, K. Svanberg, S. Svanberg, Method for studying gas composition in the human mastoid cavity by use of laser spectroscopy, Annals of Otology, Rhinol. Laryngol. 121 (2012)

    Google Scholar 

  89. M. Sundberg, M. Peebo, P.A. Öberg, P.G. Lundquist, T. Strömberg, Diffuse reflectance spectroscopy of the human tympanic membrane in otitis media. Physiol. Meas. 25, 1473 (2004)

    Article  Google Scholar 

  90. M. Lewander, A. Bruzelius, S. Svanberg, K. Svanberg, V. Fellman, Non-intrusive gas monitoring in neonatal lungs using diode laser spectroscopy: feasibility study. J. Biomed. Opt. 16, 127002 (2011)

    Article  Google Scholar 

  91. P. Lundin, E. Krite Svanberg, L. Cocola, M. Lewander Xu, G. Somesfalean, S. Andersson-Engels, J. Jahr, V. Fellman, K. Svanberg, S. Svanberg, Non-invasive monitoring of gas in the lungs and intestines of newborn infants using diode lasers: feasibility study. J. Biomed. Opt. 18, 127005 (2013)

    Article  Google Scholar 

  92. E. Krite Svanberg, P. Lundin et al., to appear

    Google Scholar 

  93. A. Morris, J.C. Wessel, E.B. Cobb, G.S. Jackson, J.R. Harrisand, A.C. Detwiler, Paroxysmal fussing in infancy, sometimes called colic. Pediatrics 14, 421 (1954)

    Google Scholar 

  94. D.W. Hide, B.M. Guyer, Prevalence of infant colic. Arch. Dis. Child. 57, 559 (1982)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to a large number of colleagues and graduate students who collaborated in the development of biomedical applications of Gas in scattering media absorption spectroscopy. These persons include Mats Andersson, Stefan Andersson-Engels, L. Cocola, Vineta Fellman, Zuguang Guan, Jing Huang, Kjell Jonson, Emilie Krite Svanberg, Märta Lewander, Tianqi Li, Liang Mei, Sven Lindberg, Patrik Lundin, Linda Persson, Roger Siemund, Gabriel Somesfalean, Tomas Svensson, and Hao Zhang. The work was supported by the Swedish Research Council (VR), through a direct grant and a Linnaeus grant to the Lund Laser Centre, by the Lund University Medical Faculty, the Knut and Alice Wallenberg Foundation, and by the Guangdong Province Innovation Research Team Program (No. 201001D0104799318).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Katarina Svanberg or Sune Svanberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Svanberg, K., Svanberg, S. (2016). Monitoring Free Gas In Situ for Medical Diagnostics Using Laser Spectroscopic Techniques. In: Olivo, M., Dinish, U. (eds) Frontiers in Biophotonics for Translational Medicine. Progress in Optical Science and Photonics, vol 3. Springer, Singapore. https://doi.org/10.1007/978-981-287-627-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-287-627-0_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-287-626-3

  • Online ISBN: 978-981-287-627-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics