Advertisement

Monitoring Free Gas In Situ for Medical Diagnostics Using Laser Spectroscopic Techniques

  • Katarina SvanbergEmail author
  • Sune SvanbergEmail author
Chapter
Part of the Progress in Optical Science and Photonics book series (POSP, volume 3)

Abstract

The development of fast, non-invasive and accurate diagnostics is of great importance in the medical field. Lasers, and optical spectroscopy and imaging techniques provide many new possibilities. Most frequently broad-band spectroscopic techniques are used for studying tissue constituents. Instead, the development of novel methods for monitoring free gas in situ using narrow-band laser spectroscopic techniques in the diagnostics of common infectious diseases and for the surveillance of pre-term infants is presented in this chapter. The gas in scattering media absorption spectroscopy (GASMAS) technique is used, relying on the fact, that the absorptive imprints of free gases are typically 10,000 times narrower than those due to the tissue itself. The work is in a translational process aiming at better diagnostics of common sinus and middle-ear infections (sinusitis and otitis) and for the management of the respiratory distress syndrome and necrotizing enterocolitis in premature infants.

Keywords

Maxillary Sinus Eustachian Tube Frontal Sinus Oxygen Signal Sinus Cavity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors are grateful to a large number of colleagues and graduate students who collaborated in the development of biomedical applications of Gas in scattering media absorption spectroscopy. These persons include Mats Andersson, Stefan Andersson-Engels, L. Cocola, Vineta Fellman, Zuguang Guan, Jing Huang, Kjell Jonson, Emilie Krite Svanberg, Märta Lewander, Tianqi Li, Liang Mei, Sven Lindberg, Patrik Lundin, Linda Persson, Roger Siemund, Gabriel Somesfalean, Tomas Svensson, and Hao Zhang. The work was supported by the Swedish Research Council (VR), through a direct grant and a Linnaeus grant to the Lund Laser Centre, by the Lund University Medical Faculty, the Knut and Alice Wallenberg Foundation, and by the Guangdong Province Innovation Research Team Program (No. 201001D0104799318).

References

  1. 1.
    T. Vo-Dinh (ed.), Biomedical Photonics Handbook (CRC Press, Boca Raton, Florida, 2003)Google Scholar
  2. 2.
    J.G. Fujimoto, D.L. Farkas, Biomedical Optical Imaging (Oxford University Press, Oxford, 2009)zbMATHGoogle Scholar
  3. 3.
    J. Popp, V.V. Tuchin, A. Chiou, S.H. Heinemann, Eds, Handbook of Biophotonics, Volumes 1–3 (Wiley-VCH 2011)Google Scholar
  4. 4.
    D.A. Boas, C. Pitris, N. Ramanujam, Handbook of Biomedical Optics (CRC Press, 2011)Google Scholar
  5. 5.
    H. Jelinkova, Ed. Lasers for Medical Application (Woodhead Publishing, 2013)Google Scholar
  6. 6.
    S. Svanberg, Laser spectroscopy in medical diagnostics, Chap. 10 in [5], pp. 286–324Google Scholar
  7. 7.
    K. Svanberg, N. Bendsoe, Photodynamic therapy for human malignancies with superficial and interstitial illumination, Chap. 25 in [5], pp. 760–778Google Scholar
  8. 8.
    S. Svanberg, LIDAR, Chap. 13.3 in F. Träger, Ed., Springer Handbook of Lasers and Optics, 2nd Edition (Springer, Heidelberg 2012), p. 1146Google Scholar
  9. 9.
    M.R. McCurdy, Y. Bakhirkin, G. Wysocki, R. Lewicki, F.K. Tittel, Recent advances of laser-spectroscopy-based techniques for applications in breath analysis. J. Breath Res. 1, 014001/1-12 (2007)Google Scholar
  10. 10.
    C. Wang, P. Sahay, Breath analysis using laser spectroscopic techniques: breath biomarkers, spectral fingerprints, and detection limits. Sensors 9, 8230 (2009)CrossRefGoogle Scholar
  11. 11.
    S.M. Cristescu, S.T. Persijn, S. te Lintel Hekkert, F.J.M. Harren, Laser-based systems for trace gas detection in life sciences. Appl. Phys. B 92, 343 (2008)CrossRefGoogle Scholar
  12. 12.
    D.D. Arslanov, M. Spunei, J. Mandon, S.M. Cristescu, S.T. Persijn, F.J.M. Harren, Optical parametric oscillator based infrared spectroscopy for sensitive molecular gas sensing. Laser Photonics Rev. 7, 188 (2013)CrossRefGoogle Scholar
  13. 13.
    M. Sjöholm, G. Somesfalean, J. Alnis, S. Andersson-Engels, S. Svanberg, Analysis of gas dispersed in scattering solids and liquids. Opt. Lett. 26, 16–18 (2001)CrossRefGoogle Scholar
  14. 14.
    M. Andersson, R. Grönlund, L. Persson, M. Sjöholm, K. Svanberg, S. Svanberg, Laser spectroscopy of gas in scattering media at scales ranging from kilometers to millimeters. Laser Phys. 17, 893 (2007)CrossRefGoogle Scholar
  15. 15.
    S. Svanberg, Analysis of trapped gas—Gas in scattering media absorption spectroscopy. Laser Phys. 20, 68 (2010)CrossRefGoogle Scholar
  16. 16.
    S. Svanberg, Gas in scattering media absorption spectroscopy—from basic studies to medical applications. Lasers Photonics Rev. 7, 779 (2013)CrossRefGoogle Scholar
  17. 17.
    R. Saiki, S. Scharf, F. Faloona, K. Mullis, G. Horn, H. Erlich et al., Enzymatic amplification of beta-globin genomic sequences and restriction analysis for diagnosis of sickle cell anemia. Science 230, 1350 (1985)CrossRefGoogle Scholar
  18. 18.
    D. Fredricks, D. Relman, Application of polymerase chain reaction to the diagnosis of infectious diseases. Clin. Infect. Dis. 29, 475 (1999)CrossRefGoogle Scholar
  19. 19.
    D.Y. Graham, J.T. Schwartz, G.D. Cain, F. Gyorkey, Prospective evaluation of biopsy number in the diagnosis of esophageal and gastric carcinoma. Gastroenterol. 82, 228 (1982)Google Scholar
  20. 20.
    H. Sue-Ling, I. Martin, J. Griffith, D.C. Ward, P. Quirke, M.F. Dixon, A.T. Axon, M.J. McMahon, D. Johnston, Early gastric cancer: 46 cases treated in one surgical department. Gut 33, 1318 (1992)CrossRefGoogle Scholar
  21. 21.
    H. Amin, L. Gilmour, S. Graham, X. Paterson-Brown, J. Terrace, T.J. Crofts, Gastric adenocarcinoma missed at endoscopy. J. R. Coll. Surg. Edinb. 47, 681 (2002)Google Scholar
  22. 22.
    S. Svanberg, Tissue diagnostics using lasers, in Lasers in Medicine, Chap. 6, ed. by R.W. Waynant (CRC Press, Baton Rouge 2002) pp. 135–169Google Scholar
  23. 23.
    S. Andersson-Engels, K. Svanberg, S. Svanberg, Fluorescence imaging in medical diagnostics, Chap. 10 in [1], pp. 265–305Google Scholar
  24. 24.
    S. Fickweiler, R.C. Krieg, H.G. Stepp, F. Hofstaedter, R. Knuechel, 5-aminolevulinic acid (ALA) mediated photodynamic therapy of bladder cancer cell lines. Proc. SPIE 3563, 143 (1999)CrossRefGoogle Scholar
  25. 25.
    W. Drexler, J.G. Fujimoto (eds.), Optical Coherence Tomography: Technology and Applications (Springer, 2008)Google Scholar
  26. 26.
    J.P. Payne, J.P. Severinghaus (eds.), Pulse Oximetry (Springer, Heidelberg, 1986)Google Scholar
  27. 27.
    P. Rolfe, In vivo near-infrared spectroscopy. Ann. Rev. Biomed. Eng. 2, 715 (2000)CrossRefGoogle Scholar
  28. 28.
    E. Krite Svanberg, P. Wollmer, S. Andersson-Engels, J. Åkeson, Physiological influence of basic perturbations assessed by non-invasive optical techniques in humans. Appl. Physiol. Nutr. Metab. 36, 946 (2011)CrossRefGoogle Scholar
  29. 29.
    C. Bachert, K. Hormann, R. Mosges, G. Rasp, H. Riechelmann, R. Muller, H. Luckhaupt, B.A. Stuck, C. Rudack, An update on the diagnosis and treatment of sinusitis and nasal polyposis. Allergy 58, 176 (2003)CrossRefGoogle Scholar
  30. 30.
    W. Fokkens, V. Lund, J. Mullol, European position paper on rhinosinusitis and nasal polyps 2007. Rhinol. Suppl. 20, 1–136 (2007)Google Scholar
  31. 31.
    I. Brook, Microbiology of sinusitis. Proc. Am. Thorac. Soc. 8, 90 (2011)CrossRefGoogle Scholar
  32. 32.
    G.H. McCracken, Treatment of acute otitis media in an era of increasing microbial resistance. Pediatr. Infect. Dis. J. 17, 576 (1998)CrossRefGoogle Scholar
  33. 33.
    S.F. Dowell, J.C. Butler, S.G. Giebink et al., Acute otitis media: management and surveillance in an era of pneumococcal resistance—a report from the drug-resistant streptococcus pneumonia therapeutic working group. Pediatr. Infect. Dis. J. 18, 1 (1999)CrossRefGoogle Scholar
  34. 34.
    H. Goossens, M. Ferech, R. van der Stichele, M. Elseviers, ESAC project group. Outpatient antibiotic use in Europe and association with resistance: a cross-national database study, Lancet 365, 579 (2005)Google Scholar
  35. 35.
    P. Lee, Chief consultant at the EurAm clinic (Guangzhou, China (private communication), 2014)Google Scholar
  36. 36.
    S. Maxson, T. Yamauchi, Acute otitis media. Pediatr. Rev. 17(6), 191–195 (1996)CrossRefGoogle Scholar
  37. 37.
    K. Ramakrishnan, R.A. Sparks, W.E. Berryhill, Diagnosis and treatment of otitis media. Am. Fam. Physician 76, 1650 (2007)Google Scholar
  38. 38.
    A.S. Lieberthal, A.E. Carroll, T. Chonmaitree et al., The diagnosis and management of acute otitis media. Pediatrics 131, 964 (2013)CrossRefGoogle Scholar
  39. 39.
    R.M. Rosenfeld, D. Kay, Natural history of untreated otitis media. Laryngoscope 113, 1645 (2003)CrossRefGoogle Scholar
  40. 40.
    M.M. Slattery, J. Morrison, Preterm delivery. Lancet 360, 1489 (2002)CrossRefGoogle Scholar
  41. 41.
    R.L. Goldenberg et al., Epidemiology and causes of preterm birth. Lancet 371, 75 (2008)CrossRefGoogle Scholar
  42. 42.
    L.B. Ware, M.A. Matthay, Medical progress – The acute respiratory distress syndrome. New Engl. J. Med. 342, 1334 (2000)CrossRefGoogle Scholar
  43. 43.
    D.G. Sweet et al., European consensus guidelines on the management of neonatal respiratory distress syndrome in preterm infants—2013 update. Neonatol. 103, 353 (2013)CrossRefGoogle Scholar
  44. 44.
    E.J. Hall, Lessons we have learned from our children: cancer risks from diagnostic radiology. Pediatr. Radiol. 32, 700 (2002)CrossRefGoogle Scholar
  45. 45.
    R.M. Kliegman, A.A. Fanaroff, Nectrotizing enterocolitis. New Engl. J. Med. 310, 1093 (1984)CrossRefGoogle Scholar
  46. 46.
    A.M. Kosloske, Epidemiology of necrotizing enterocolitis. Acta Paediatr. Suppl. 396, 2 (1994)CrossRefGoogle Scholar
  47. 47.
    J. Pietz, B. Achanti, L. Lilien, E. Clifford Stepka, S. Ken Mehta, Prevention of necrotitizing enterocolitis in preterm infants: a 20-year experience. Pediatrics 119, 164 (2006)CrossRefGoogle Scholar
  48. 48.
    S. Svanberg, Differential absorption lidar (DIAL), in Air Monitoring by Spectroscopic Techniques, M. Sigrist (ed.), (Wiley, N.Y. 1994), p. 85Google Scholar
  49. 49.
    G. Somesfalean, M. Sjöholm, J. Alnis, C. af Klinteberg, S. Andersson-Engels, S. Svanberg, Concentration measurement of gas imbedded in scattering media employing time and spatially resolved techniques. Appl. Optics 41, 3538–3544 (2002)CrossRefGoogle Scholar
  50. 50.
    L. Persson, M. Lewander, M. Andersson, K. Svanberg, S. Svanberg, Simultaneous detection of molecular oxygen and water vapor in the tissue optical window using tunable diode laser spectroscopy. Appl. Opt. 47, 2028 (2008)CrossRefGoogle Scholar
  51. 51.
    M. Lewander, Z.G. Guan, K. Svanberg, S. Svanberg, T. Svensson, Clinical system for non-invasive in situ monitoring of gases in the human paranasal sinuses. Opt. Express 13, 10849 (2009)CrossRefGoogle Scholar
  52. 52.
    L. Persson, M. Andersson, F. Andersson, S. Svanberg, Approach to optical interference fringe reduction in diode-laser-based absorption spectroscopy. Appl. Phys. B 87, 523 (2007)CrossRefGoogle Scholar
  53. 53.
    S. Svanberg, Atomic and Molecular Spectroscopy—Basic Aspects and Practical Applications, 4th edn. (Springer, Heidelberg, 2004)CrossRefGoogle Scholar
  54. 54.
    A.L. Buck, New equations for computing vapor pressure and enhancement factor. J. Appl. Meteorol. 20, 1527–1532 (1996)CrossRefGoogle Scholar
  55. 55.
    L. Mei, G. Somesfalean, S. Svanberg, Pathlength determination for gas in scattering media absorption spectroscopy. Sensors 14, 3871 (2014)CrossRefGoogle Scholar
  56. 56.
    P. Lundin, L. Mei, S. Andersson-Engels, S. Svanberg, Laser spectroscopic gas concentration measurements in situations with unknown optical path length enabled by absorption line shape analysis. Appl. Phys. Lett. 103, 034105 (2013)CrossRefGoogle Scholar
  57. 57.
    J. Alnis, B. Anderson, M. Sjöholm, G. Somesfalean, S. Svanberg, Laser spectroscopy on free molecular oxygen dispersed in wood materials. Appl. Phys. B 77, 691 (2003)CrossRefGoogle Scholar
  58. 58.
    M. Andersson, L. Persson, M. Sjöholm, S. Svanberg, Spectroscopic studies of wood-drying processes. Opt. Express 14, 3641 (2006)CrossRefGoogle Scholar
  59. 59.
    M. Karlsson, P. Lundin, L. Cocola, G. Somesfalean, S. Svanberg, I. Bargigia, C. D´Andrea, A. Nevin, A. Farina, A. Pifferi, R. Cubeddu, M. Orlandi, Non-invasive optical diagnosis of gases in wood, Shipwrecks 2011, Ed. M. Ek, ISBN 978-91-7501-142-4 (Vasa Museum, Stockholm 2011) p. 176Google Scholar
  60. 60.
    I. Bargigia, A. Nevin, A. Farina, A. Pifferi, C. D’Andrea, M. Karlsson, P. Lundin, G. Somesfalean, S. Svanberg, Diffuse optical techniques applied to wood characterization. J. Near Infrared Spectr. 21, 259 (2013)CrossRefGoogle Scholar
  61. 61.
    T. Svensson, Z. Shen, Laser spectroscopy of gas confined in nanoporous materials. Appl. Phys. Lett. 96, 021107 (2010)CrossRefGoogle Scholar
  62. 62.
    T. Svensson, M. Lewander, S. Svanberg, Laser absorption spectroscopy of water vapor confined in nanoporous alumina: wall collision line broadening and gas diffusion dynamics. Opt. Express 18, 16460 (2010)CrossRefGoogle Scholar
  63. 63.
    C.T. Xu, M. Lewander, S. Andersson-Engels, E. Adolfsson, T. Svensson, S. Svanberg, Wall collision line broadening at reduced pressures: towards non-destructive characterization of nanoporous materials. Phys. Rev. A 84, 042705 (2011)CrossRefGoogle Scholar
  64. 64.
    T. Svensson, E. Adolfsson, M. Burresi, R. Savo, C.T. Xu, D.S. Wiersma, S. Svanberg, Pore size assessment by high-resolution laser spectroscopy of wall collision line broadening of confined gases: experiments of strongly scattering nanoporous zirconia ceramics with fine-tuned pore sizes, Appl. Phys. B. doi: 10.1007/S00340-012-5011-s (2012)
  65. 65.
    T. Svensson, E. Adolfsson, M. Lewander, C.T. Xu, S. Svanberg, Disordered, strongly scattering porous materials as miniature multi-pass gas cells. Phys. Rev. Lett. 107, 143901 (2011)CrossRefGoogle Scholar
  66. 66.
    X.T. Lou, C.T. Xu, S. Svanberg, G. Somesfalean, Multi-mode diode laser correlation spectroscopy using gas-filled porous materials for pathlength enhancement. Appl. Phys. B 109, 453 (2012)CrossRefGoogle Scholar
  67. 67.
    T. Svensson, L. Persson, M. Andersson, S. Svanberg, S. Andersson-Engels, J. Johansson, S. Folestad, Noninvasive characterization of pharmaceutical solids by diode laser oxygen spectroscopy. Appl. Spectr. 61, 784 (2007)CrossRefGoogle Scholar
  68. 68.
    T. Svensson, M. Andersson, L. Rippe, S. Svanberg, S. Andersson-Engels, J. Johansson, S. Folestad, VCSEL-based oxygen spectroscopy for structural analysis of pharmaceutical solids. Appl. Phys. B 90, 345 (2008)CrossRefGoogle Scholar
  69. 69.
    T. Svensson, E. Alerstam, J. Johansson, Stefan Andersson-Engels, Optical porosimetry and investigations of the porosity experienced by light interacting with porous media. Opt. Lett. 35, 1740–1742 (2010)CrossRefGoogle Scholar
  70. 70.
    L. Persson, B. Anderson, M. Andersson, M. Sjöholm, S. Svanberg, Studies of gas exchange in fruits using laser spectroscopic techniques, in Proceedings of the Fruitic 05, Information and Technology for Sustainable Fruit and Vegetable Production, 543–552, Montpellier (September 2005)Google Scholar
  71. 71.
    L. Persson, H. Gao, M. Sjöholm, S. Svanberg, Diode laser absorption spectroscopy for studies of gas exchange in fruits. Lasers Opt. Engineering 44, 687 (2006)CrossRefGoogle Scholar
  72. 72.
    U. Tylewicz, P. Lundin, L. Cocola, P. Rocculi, S. Svanberg, P. Dejmek, F. Gόmez Galindo, Gas in scattering media absorption spectroscopy (GASMAS) detected persistent vacuum in apple tissue after vacuum impregnation, Food Biophys. 10, 1483-011-9239-7 (2011)Google Scholar
  73. 73.
    H. Zhang, J. Huang, T.Q. Li, X.X. Wu, S. Svanberg, K. Svanberg, Studies for tropical fruit ripening using three different spectroscopic techniques. J. Biomed. Opt. 19, 067001 (2014)CrossRefGoogle Scholar
  74. 74.
    M.L.A.T.M. Hertog, H.W. Peppelenbos, R.G. Evelo, L.M.M. Tijskens, Postharvest. Technol. Biol. 14, 335 (1998)CrossRefGoogle Scholar
  75. 75.
    R.M. Beaudry, Postharvest Biol. Technol. 15, 293 (1999)CrossRefGoogle Scholar
  76. 76.
    M. Lewander, Z.G. Guan, L. Persson, A. Olsson, S. Svanberg, Food monitoring based on diode laser gas spectroscopy. Appl. Phys. B 93, 619 (2008)CrossRefGoogle Scholar
  77. 77.
    P. Lundin, L. Cocola, A. Olsson, S. Svanberg, Non-intrusive headspace gas measurements by laser spectroscopy—Performance validated by an intrusive reference sensor, J. Food Eng. http://dx.doi.org/10.1016/j.jfoodeng.2012.03.008 (2012)
  78. 78.
    M. Lewander, T. Svensson, S. Svanberg, A. Olsson, Non intrusive measurements of food and packaging quality. Packag. Technol. Sci. 24, 271 (2011)CrossRefGoogle Scholar
  79. 79.
    I.L. Church, A.L. Parsons, Modied atmosphere packaging technology—A review. J. Sci. Food Agri. 67, 143 (1995)CrossRefGoogle Scholar
  80. 80.
    C.A. Phillips, Review: Modified atmosphere packaging and its effects on the microbiological quality and safety of produce. Int. J. Food Sci. & Technol. 31, 463 (1996)CrossRefGoogle Scholar
  81. 81.
    L. Persson, K. Svanberg, S. Svanberg, On the potential for human sinus cavity diagnostics using diode laser gas spectroscopy. Appl. Phys. B 82, 313 (2006)CrossRefGoogle Scholar
  82. 82.
    L. Persson, E. Kristensson, L. Simonsson, S. Svanberg, Monte Carlo simulations of optical human sinusitis diagnostics. J. Biomedical Optics 12, 054002 (2007)CrossRefGoogle Scholar
  83. 83.
    H. Zhang, J. Huang, T.Q. Li, S. Svanberg, K. Svanberg, Optical detection of middle ear infection using spectroscopic techniques—Phantom experiments, J. Biomed. Opt., doi:  10.1117/.jbo (2015)
  84. 84.
    L. Persson, M. Andersson, T. Svensson, K. Svanberg, S. Svanberg, Non-intrusive optical study of gas and its exchange in human maxillary sinuses. SPIE 6628, 662804 (2007)CrossRefGoogle Scholar
  85. 85.
    L. Persson, M. Andersson, M. Cassel-Engquist, K. Svanberg, S. Svanberg, Gas monitoring in human sinuses using tunable diode laser spectroscopy, J. Biomed. Opt. 12, (5) (2007)Google Scholar
  86. 86.
    M. Lewander, S. Lindberg, T. Svensson, R. Siemund, K. Svanberg, S. Svanberg, Clinical study assessing information on the maxillary and frontal sinuses using diode laser gas spectroscopy. Rhinology 50, 26 (2011)CrossRefGoogle Scholar
  87. 87.
    J. Huang, H. Zhang, T.Q L.i, H.Y. Lin, K. Svanberg, S. Svanberg, Assessment of human sinus cavity air volume using tunable diode laser spectroscopy, with application to sinusitis diagnostics, to appear (2015)Google Scholar
  88. 88.
    S. Lindberg, M. Lewander, T. Svensson, R. Siemund, K. Svanberg, S. Svanberg, Method for studying gas composition in the human mastoid cavity by use of laser spectroscopy, Annals of Otology, Rhinol. Laryngol. 121 (2012)Google Scholar
  89. 89.
    M. Sundberg, M. Peebo, P.A. Öberg, P.G. Lundquist, T. Strömberg, Diffuse reflectance spectroscopy of the human tympanic membrane in otitis media. Physiol. Meas. 25, 1473 (2004)CrossRefGoogle Scholar
  90. 90.
    M. Lewander, A. Bruzelius, S. Svanberg, K. Svanberg, V. Fellman, Non-intrusive gas monitoring in neonatal lungs using diode laser spectroscopy: feasibility study. J. Biomed. Opt. 16, 127002 (2011)CrossRefGoogle Scholar
  91. 91.
    P. Lundin, E. Krite Svanberg, L. Cocola, M. Lewander Xu, G. Somesfalean, S. Andersson-Engels, J. Jahr, V. Fellman, K. Svanberg, S. Svanberg, Non-invasive monitoring of gas in the lungs and intestines of newborn infants using diode lasers: feasibility study. J. Biomed. Opt. 18, 127005 (2013)CrossRefGoogle Scholar
  92. 92.
    E. Krite Svanberg, P. Lundin et al., to appearGoogle Scholar
  93. 93.
    A. Morris, J.C. Wessel, E.B. Cobb, G.S. Jackson, J.R. Harrisand, A.C. Detwiler, Paroxysmal fussing in infancy, sometimes called colic. Pediatrics 14, 421 (1954)Google Scholar
  94. 94.
    D.W. Hide, B.M. Guyer, Prevalence of infant colic. Arch. Dis. Child. 57, 559 (1982)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  1. 1.Center for Optical and Electromagnetic ResearchSouth China Normal UniversityGuangzhouChina
  2. 2.Division of OncologyLund University HospitalLundSweden
  3. 3.Lund Laser CenterLund UniversityLundSweden
  4. 4.Atomic Physics Division, Department of PhysicsLund UniversityLundSweden

Personalised recommendations