Skip to main content

Neurocognitive Aspects of Musical Improvisation and Performance

  • Chapter
  • First Online:
Multidisciplinary Contributions to the Science of Creative Thinking

Part of the book series: Creativity in the Twenty First Century ((CTFC))

Abstract

Improvisation is a bedrock of human creativity; it is ubiquitous in musical performance and is considered one of the most abstract and complex aspects of (musical) behaviour. Many scientists still believe that creativity and musical improvisation are too difficult to subject to empirical enquiry. However, musical creativity is an excellent means to study cognitive processes such as pattern formation and recognition, top–down attentional control, expectation, imagery, aesthetics and embodied cognition. Furthermore, musical improvisation is usually an intensely pleasurable experience, whereby the creator finds him- or herself in an optimal relationship between his/her capabilities and actions, similar to a flow-like creative state. In this chapter we present our current neurocognitive understanding of several facets of musical creativity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Beeman, M. J., Bowden, E. M., Haberman, J., Frymiare, J. L., Arambel-Liu, S., & Greenblatt, R. (2004). Neural activity when people solve verbal problems with insight. PLos Biology, 2(4), E97.

    Google Scholar 

  • Bengtsson, S. L., Csikszentmihalyi, M., & Ullen, F. (2007). Cortical regions involved in the generation of musical structures during improvisation in pianists. Journal of Cognitive Neuroscience, 19(5), 830–842. doi:10.1162/jocn.2007.19.5.830.

    Article  Google Scholar 

  • Boden, M. (1990). The creative mind. Abacus.

    Google Scholar 

  • Brown, S., Martinez, M. J., & Parsons, L. M. (2006). Music and language side by side in the brain: A PET study of the generation of melodies and sentences. European Journal of Neuroscience, 23(10), 2791–2803.

    Article  Google Scholar 

  • Carlsson, I., Wendt, P.E., & Risberg, J. (2000). On the neurobiology of creativity. Differences in frontal activity between high and low creative subjects. Neuropsychologia, 38, 873–885.

    Google Scholar 

  • Cooper, G., & Meyer, L. B. (1960). The rhythmic structure of music. Chicago: University of Chicago Press.

    Google Scholar 

  • Csikszentmihalyi, M. (1990). Flow: The psychology of optimal experience (1st ed.). New York: Harper & Row.

    Google Scholar 

  • Csikszentmihalyi, M. (1996). Creativity: Flow and the psychology of discovery and invention. New York: HarperCollins.

    Google Scholar 

  • Damasio, A. R. (1990). Synchronous activation in multiple cortical regions: Mechanisms for recall. Seminars in the Neurosciences, 2, 287–297.

    Google Scholar 

  • Darby, D. G., Nobre, A. C., Thangaraj, V., Edelman, R., Mesulam, M. M., & Warach, S. (1996). Cortical activation in the human brain during lateral saccades using EPISTAR functional magnetic resonance imaging. Neuroimage, 3(1), 53–62. doi:10.1006/nimg.1996.0006.

    Article  Google Scholar 

  • De Dreu, C. K., Nijstad, B. A., Baas, M., Wolsink, I., & Roskes, M. (2012). Working memory benefits creative insight, musical improvisation, and original ideation through maintained task-focused attention. Personality and Social Psychology Bulletin, 38(5), 656–669.

    Article  Google Scholar 

  • Dean, R. T., & Bailes, F. A. (2010). The control of acoustic intensity during jazz and free improvisation performance. Critical Studies in Improvisation/Études Critiques en Improvisation, 6(2), 1–22.

    Google Scholar 

  • Diaz, F. M. (2013). Mindfulness, attention, and flow during music listening: An empirical investigation. Psychology of Music, 41(1), 42–58.

    Article  Google Scholar 

  • Dietrich, A. (2004). Neurocognitive mechanisms underlying the experience of flow. Consciousness and Cognition, 13(4), 746–761. doi:10.1016/j.concog.2004.07.002.

    Article  Google Scholar 

  • Dijksterhuis, A., Bos, M. W., Nordgren, L. F., & van Baaren, R. B. (2006). On making the right choice: The deliberation-without-attention effect. Science, 311, 1005–1007.

    Article  Google Scholar 

  • Dijksterhuis, A., & Meurs, T. (2006). Where creativity resides: The generative power of unconscious thought. Consciousness and Cognition, 15, 135–146.

    Article  Google Scholar 

  • Dijksterhuis, A., & Nordgren, L. F. (2006). A theory of unconscious thought. Perspectives on Psychological Science, 1, 95–109.

    Article  Google Scholar 

  • Donner, T. H., & Siegel, M. (2011). A framework for local cortical oscillation patterns. Trends in Cognitive Sciences, 15(5), 191–199. doi:10.1016/j.tics.2011.03.007.

    Article  Google Scholar 

  • Finke, R. A., Ward, T. B., & Smith, S. M. (1992). Creative cognition: Theory, research, and applications. Cambridge, MA: MIT Press.

    Google Scholar 

  • Fritz, B. S., & Avsec, A. (2007). The experience of flow and subjective well-being of music students. Horizons of Psychology, 16(2), 5–17.

    Google Scholar 

  • Fullagar, C. J., Knight, P. A., & Sovern, H. S. (2013). Challenge/skill balance, flow, and performance anxiety. Applied Psychology, 62(2), 236–259.

    Article  Google Scholar 

  • Gardner, H. (1983). Frames of mind. New York: Basic Books.

    Google Scholar 

  • Gazzaniga, M. S. (2004). The cognitive neurosciences. Cambridge, MA: MIT Press.

    Google Scholar 

  • Hämäläinen, M. H., & Ilmoniemi, R. J. (1994). Interpreting magnetic fields of the brain: minimum norm estimates. Medical & Biological Engineering & Computing, 32, 35–42.

    Google Scholar 

  • Heilman, K. M., Nadeau, S. E., & Beversdorf, D. O. (2003). Creative innovation: Possible brain mechanisms. Neurocase, 5, 369–379.

    Article  Google Scholar 

  • Johnson-Laird, P. N. (2002). How jazz musicians improvise. Music Perception, 19(3), 415–442.

    Article  Google Scholar 

  • Limb, C. J., & Braun, A. R. (2008). Neural substrates of spontaneous musical performance: An FMRI study of jazz improvisation. PLoS One, 3(2), e1679. doi:10.1371/journal.pone.0001679.

    Article  Google Scholar 

  • Limb, C. J., Jiradejvong, P., Lopez-Gonzalez, M., Rankin, S. K., & Donnay, G. F. (2014). Neural Substrates of interactive musical improvisation: An fMRI study of ‘trading fours’ in jazz. PLoS One, 9(2), e88665. doi:10.1371/journal.pone.0088665.

    Article  Google Scholar 

  • Liu, S., Chow, H. M., Xu, Y., Erkkinen, M. G., Swett, K. E., Eagle, M. W., et al. (2012). Neural correlates of lyrical improvisation: An FMRI study of freestyle rap. Sci Rep, 2, 834. doi:10.1038/srep00834.

    Google Scholar 

  • Logothetis, N. K. (2008). What we can do and what we cannot do with fMRI. Nature, 453, 869–878.

    Article  Google Scholar 

  • MacDonald, R., Byrne, C., & Carlton, L. (2006). Creativity and flow in musical composition: An empirical investigation. Psychology of Music, 34(3), 292–306.

    Article  Google Scholar 

  • Marin, M. M., & Bhattacharya, J. (2013). Getting into the musical zone: Trait emotional intelligence and amount of practice predict flow in pianists. Frontiers in Psychology, 4, 853. doi:10.3389/fpsyg.2013.00853.

    Article  Google Scholar 

  • Martindale, C. (2004). Biological bases of creativity. In R. J. Sternberg (Ed.), Handbook of creativity (pp. 137–152). Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Nunez, P. (1995). Neocortical dynamics and human EEG rhythms. New York: Oxford University Press.

    Google Scholar 

  • Nunez, P. L., Srinivasan, R., Westdorp, A. F., Wijesinghe, R. S., Tucker, D. M., Silberstein, R. B., et al. (1997). EEG coherency: I: Statistics, reference electrode, volume conduction, Laplacians, cortical imaging, and interpretation at multiple scales. Electroencephalography and Clinical Neurophysiology, 103(5), 499–515.

    Article  Google Scholar 

  • O’Neill, S. (1999). Flow theory and the development of musical performance skills. Bulletin of the Council for Research in Music Education, 129–134.

    Google Scholar 

  • Pandya, D. N., & Kuypers, H. G. (1969). Cortico-cortical connections in the rhesus monkey. Brain Research, 13(1), 13–36.

    Article  Google Scholar 

  • Parncutt, R. (1994). A perceptual model of pulse salience and metrical accent in musical rhythms. Music Perception, 11, 409–464.

    Article  Google Scholar 

  • Pascual-Marqui, R. D., Michel, C. M., & Lehmann, D. (1994). Low resolution electromagnetic tomography: A new method for localizing electrical activity in the brain. International Journal of Psychophysiology, 18(1), 49–65.

    Article  Google Scholar 

  • Petrides, K. V., & Furnham, A. (2001). Trait emotional intelligence: Psychometric investigation with reference to established trait taxonomies. European Journal of Personality, 15, 425–448.

    Article  Google Scholar 

  • Pfurtscheller, G., & Lopes Da Silva, F. H. (1999). Event-related EEG/MEG synchronization and desynchronization: basic principles. Clinical Neurophysiology, 110, 1842–1857.

    Google Scholar 

  • Platel, H., Price, C., Baron, J. C., Wise, R., Lambert, J., Frackowiak, R. S., et al. (1997). The structural components of music perception. A functional anatomical study. Brain, 120(Pt 2), 229–243.

    Article  Google Scholar 

  • Pressing, J. (1998). Psychological constraints on improvisational expertise and communication. In B. Nettl & M. Russell (Eds.), In the course of performance: Studies in the world of musical improvisation (pp. 47–68). Chicago: Chicago University Press.

    Google Scholar 

  • Ramachandran, V. S., & Hubbard, E. M. (2003). Hearing colors, tasting shapes. Scientific American, 288, 52–59.

    Article  Google Scholar 

  • Rhodes, M. (1961). An analysis of creativity. Phi Delta Kappan, 42(7), 305–310.

    Google Scholar 

  • Sandkuhler, S., & Bhattacharya, J. (2008). Deconstructing insight: EEG correlates of insightful problem solving. PLoS One, 3(1), e1459. doi:10.1371/journal.pone.0001459.

    Article  Google Scholar 

  • Sawyer, K. (1992). Improvisational creativity: An analysis of jazz performance. Creativity Research Journal, 5(3), 253–263.

    Article  Google Scholar 

  • Sawyer, R. K. (2006). Group creativity: Musical performance and collaboration. Psychology of Music, 34(2), 148–165.

    Article  Google Scholar 

  • Stoeckel, C., Gough, P. M., Watkins, K. E., & Devlin, J. T. (2009). Supramarginal gyrus involvement in visual word recognition. Cortex, 45(9), 1091–1096.

    Article  Google Scholar 

  • Thompson, E., Lutz, A., & Cosmelli, D. (2004). Neurophenomenology: An introduction for neurophilosophers. In A. Brook & K. Akins (Eds.), Cognition and the brain: The philosophy and neuroscience movement. New York, Cambridge: Cambridge University Press.

    Google Scholar 

  • Ullén, F., de Manzano, Ö., Almeida, R., Magnusson, P. K., Pedersen, N. L., Nakamura, J., et al. (2012). Proneness for psychological flow in everyday life: Associations with personality and intelligence. Personality and Individual Differences, 52(2), 167–172.

    Article  Google Scholar 

  • Ullen, F., Eriksson, H., Fransson, P., de Manzano, O., & Pinho, A. L. (2014). Connecting to create: Expertise in musical improvisation is associated with increased functional connectivity between premotor and prefrontal areas. Journal of Neuroscience, 34(18), 6156–6163.

    Article  Google Scholar 

  • Ulrich, F., Keller, J., Hoenig, K., Waller, C., & Grön, G. (2014). Neural correlates of experimentally induced flow experiences. Neuroimage, 86, 194–202.

    Article  Google Scholar 

  • Varela, F. J. (1995). Resonant cell assemblies: A new approach to cognitive functions and neuronal synchrony. Biological Research, 28, 81–95.

    Google Scholar 

  • Varela, F., Lachaux, J. P., Rodriguez, E., & Martinerie, J. (2001). The brainweb: Phase synchronization and large-scale integration. Nature Reviews Neuroscience, 2(4), 229–239.

    Article  Google Scholar 

  • Wallas, G. (1926). The art of thought. New York: Harcourt Brace.

    Google Scholar 

  • Ward, L. M. (2003). Synchronous neural oscillations and cognitive processes. Trends In Cognitive Sciences, 7, 553–559.

    Google Scholar 

  • Weinberger, D. R., Berman, K. F., & Zee, R. F. (1986). Physiologic dysfunction of dorsolateral prefrontal cortex in schizophrenia. Archives of General Psychiatry, 43, 114–124.

    Article  Google Scholar 

  • Zhong, C.-B., Dijksterhuis, A., & Galnisky, A. D. (2008). The merits of unconscious thought in creativity. Psychological Science, 19, 912–918.

    Article  Google Scholar 

Download references

Acknowledgment

The research is partially supported by the Research Grant EP/H01294X funded by the EPSRC, UK and the CREAM project (Grant Agreement no. 612022) funded by the European Commission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shama Rahman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Rahman, S., Bhattacharya, J. (2016). Neurocognitive Aspects of Musical Improvisation and Performance. In: Corazza, G., Agnoli, S. (eds) Multidisciplinary Contributions to the Science of Creative Thinking. Creativity in the Twenty First Century. Springer, Singapore. https://doi.org/10.1007/978-981-287-618-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-981-287-618-8_15

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-287-617-1

  • Online ISBN: 978-981-287-618-8

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics