Skip to main content

Construction of the Numerical Wave Databases Anemoc-2 on the Mediterranean Sea and the Atlantic Ocean Through Hindcast Simulations Over the Period 1979–2010

  • Chapter
  • First Online:
Advances in Hydroinformatics

Part of the book series: Springer Water ((SPWA))

Abstract

In the 2000s, CEREMA and EDF R&D have been collaborating to build two continuous wave databases through numerical hindcast simulations: one covers the Atlantic Ocean, the other the Mediterranean Sea. These databases are called ANEMOC. Over the last three years, new versions of the two numerical atlases have been created, in collaboration with Saint-Venant Laboratory. Several improvements have been made in the construction of ANEMOC-2: the Atlantic model covers a larger area, the temporal coverage of the atlases is larger (32 years from 1979 to 2010), direction and frequency discretization is finer, wind forcing is finer both in time (1 h resolution) and space (0.312) and the computation meshes are refined to reach 800–1000 m along the French coast. The simulations are performed with the numerical wave model TOMAWAC, a third generation spectral model, which is a module of the TELEMAC-MASCARET open source suite. The databases are calibrated with altimeters measurements, and validated in a second step against uncorrelated buoys measurements. The databases provide several wave parameters: significant wave height, mean, peak and energy period, mean direction, angular wave spreading, and wave power. More results regarding calibration and validation are presented for the Mediterranean wave model. Results of both Mediterranean and Atlantic databases are then presented. Their analyses by comparison with altimeter and buoy measurements provide an assessment of many of their characteristics. Finally, ANEMOC-2 ability to reproduce intense wave conditions is highlighted by the study of two storm events.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Benoit, M., Marcos, F., & Becq, F. (1996). Development of a third generation shallow-water wave model with unstructured spatial meshing. Proceedings of 25th Conference on Coastal Engineering, Orlando (FL, USA), ASCE, pp. 465–478.

    Google Scholar 

  2. Benoit, M., & Lafon, F. (2004). A nearshore wave atlas along the coasts of France based on the numerical modelling of wave climate over 25 years. Proceedings of 29th Conference on Coastal Engineering (ICCE’2004), Lisbonne (Portugal), pp. 714–726.

    Google Scholar 

  3. Benoit, M., Lafon, F., & Goasguen, G. (2008). Constitution et exploitation d’une base de données d’états de mer le long des côtes françaises par simulation numérique sur 23 ans. Base ANEMOC en Atlantique—Manche—Mer du Nord. European Journal of Environmental and Civil Engineering, 12(1–2), 35–50.

    Article  Google Scholar 

  4. Bidlot, J.-R., Janssen, P. A. E. M., & Abdalla, S. (2007). A revised formulation of ocean wave dissipation and its model impact. ECMWF Tech. Rep. Memo. Reading.

    Google Scholar 

  5. Charles, E., Idier, D., Thiebot, J., le Cozannet, G., Pedreros, R., Ardhuin, F. et al. (2012). Present wave climate in the Bay of Biscay: Spatiotemporal Variability and trends from 1958 to 2001. Journal of Climate, 25, 2020–2039. doi:10.1175/JCLI-D-11-00086.1.

    Article  Google Scholar 

  6. Dodet, G., Bertin, X., & Taborda, R. (2010). Wave climate variability in the North-East Atlantic Ocean over the last six decades. Ocean Modelling, 31, 120–131.

    Article  Google Scholar 

  7. Hasselmann, K. et al. (1973). Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Deutschen Hydrographischen Zeitschrift.

    Google Scholar 

  8. Hasselmann, S., & Hasselmann, K. (1985). Computations and parameterizations of the nonlinear energy transfer in gravity-wave spectrum. Part I: a new method for efficient computations of the exact nonlinear transfer integral. Journal of Physical Oceanography, 15, 1369–1377.

    Article  Google Scholar 

  9. Janssen, P. (1989). Wave induced stress and the drag of air flow sea waves. Journal of Physical Oceanography, 19, 745–754.

    Article  Google Scholar 

  10. Janssen, P. (1991). Quasi-linear theory of wind-wave generation applied to wave forecasting. Journal of Physical Oceanography, 21, 1631–1642.

    Article  Google Scholar 

  11. Komen, G. J., Hasselmann, S., & Hasselmann, K. (1984). On the existence of a fully developed wind-sea spectrum. Journal of Physical Oceanography, 14, 1271–1285.

    Article  Google Scholar 

  12. Morellato, D., & Benoit, M. (2009). Construction d’une base de données d’états de mer le long des côtes françaises méditerranéennes par simulations rétrospectives couvrant la période 1979–2008. Colloque CM2, Tunis, décembre 2009.

    Google Scholar 

  13. Morellato, D., & Benoit, M. (2010). Constitution of a numerical wave data-base along the French Mediterranean coasts through hindcast simulations over 1979–2008. Colloque AIPCN MMX Congress 2010, Liverpool, Mai 2010.

    Google Scholar 

  14. Queffeulou, P., & Croize-Fillon, D. (2009). La mesure satellite de hauteur de vague par altimètre. Etat des lieux, application à la climatologie et à la modélisation des états de mer. Proc. AMA 2009. Les Ateliers de Modélisation de l’Atmosphère, Toulouse.

    Google Scholar 

  15. Saha, S., et al. (2010). The NCEP climate forecast system reanalysis. Bulletin of the American Meteorological Society, 91, 1015–1057.

    Article  Google Scholar 

  16. Thornton, E. B., & Guza, R. T. (1983). Transformation of wave height distribution. Journal of Geophysical Research, 88, 5925–5938.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the NOAA for the provision of the CFSR reanalysis used in this work. Institutes IFREMER, Météo-France, CEREMA, ISPRA (RON), XIOM, LEGOS, and GEBCO are thanked, respectively for altimeter and scatterometer observations, in situ observations and bathymetric databases.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne-Laure Tiberi-Wadier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Tiberi-Wadier, AL., Laugel, A., Benoit, M. (2016). Construction of the Numerical Wave Databases Anemoc-2 on the Mediterranean Sea and the Atlantic Ocean Through Hindcast Simulations Over the Period 1979–2010. In: Gourbesville, P., Cunge, J., Caignaert, G. (eds) Advances in Hydroinformatics. Springer Water. Springer, Singapore. https://doi.org/10.1007/978-981-287-615-7_9

Download citation

Publish with us

Policies and ethics