Skip to main content

Position Tracking Systems for Ultrasound Imaging: A Survey

  • Chapter
  • First Online:
Book cover Medical Imaging Technology

Abstract

With the rapid advancement of position tracking devices, the application of such system in medical imaging is increasing correspondingly. The uses of position tracking systems in ultrasound imaging have been established for more than a decade. Its implementation ranges from two-dimensional (2D) to three-dimensional (3D) ultrasound reconstruction, image registration for multimodality imaging, to image-guided navigation. This progression has brought the ultrasound imaging system become more accurate, interactive, multidimensional, and ubiquitous with other systems. This chapter provides an appraisal of various position tracking systems for ultrasound biomedical imaging applications. We highlight our study on the position tracking devices, methods overview, and position tracking implementation in ultrasound imaging systems and applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bostick LM, Polhemus WL (1963) Celestial computers. Patent number US3109588 A

    Google Scholar 

  2. Kuipers J (1975) Object tracking and orientation determination means, system and process. Patent number US3868565

    Google Scholar 

  3. Raab FH, Blood EB, Steiner TO, Jones HR (1979) Magnetic position and orientation tracking system. IEEE Trans Aerospace Electr Syst AES-15(5):709–718

    Google Scholar 

  4. Kuipers JB (1980) SPASYN: an electromagnetic relative position and orientation tracking system. IEEE Trans Instrum Meas 29(4):462–466

    Google Scholar 

  5. Paperno E, Sasada I, Leonovich E (2001) A new method for magnetic position and orientation tracking. IEEE Trans Magn 37(4):1938–1940

    Google Scholar 

  6. Fang W, Son H (2011) Optimization of measuring magnetic fields for position and orientation tracking. IEEE/ASME Trans Mechatron 16(3):440–448

    Google Scholar 

  7. Wen J (2010) Electromagnetic tracking for medical imaging. MSc Thesis, University in St Louis, Washington, DC

    Google Scholar 

  8. Ferre MR, Jakab PD, Tieman JS (1999) Position tracking and imaging system for use in medical applications. Patent number US 5967980 A

    Google Scholar 

  9. Watanabe E, Manaka S, Kosugi Y (1990) System for indicating a position to be operated in a patient’s body. Patent number US 5050608 A

    Google Scholar 

  10. Zhu B, Wang X, Cai K-Y (2010) Tracking control for angular-rate-sensorless vertical take-off and landing aircraft in the presence of angular-position measurement delay. IET Control Theory Appl 4(6):957–969

    Google Scholar 

  11. Kaiser MK, Gans NR, Dixon WE (2010) Vision-based estimation for guidance, navigation, and control of an aerial vehicle. IEEE Trans Aerosp Electr Syst 46(3):1064–1077

    Google Scholar 

  12. Sivaraman S, Trivedi MM (2013) Integrated lane and vehicle detection, localization, and tracking: a synergistic approach. IEEE Trans Intell Transp Syst 14(2):906–917

    Google Scholar 

  13. Cavanagh P, Alvarez GA (2005) Tracking multiple targets with multifocal attention. Trends Cognit Sci 9(7):349–354

    Article  Google Scholar 

  14. Mei L, Yu J, Yang L, Yao L, Zhang Y (2012) Consecutive tracking for ballistic missile based on bearings-only during boost phase. 23(5):700–707

    Google Scholar 

  15. Kendoul F (2012) Survey of advances in guidance, unmanned rotorcraft systems. J Field Robot 29(2):315–378

    Article  Google Scholar 

  16. Jang J-S (2003) Device and method for tracking location of mobile telephone in mobile telecommunication network. Patent number US 6526283 B1

    Google Scholar 

  17. Porretta M, Nepa P, Manara G, Giannetti F (2008) Location, location, location. IEEE Veh Technol Mag pp 20–29

    Google Scholar 

  18. Liao W-H, Lee Y-C, Kedia SP (2011) Mobile anchor positioning for wireless sensor networks. IET Commun 5(7):914–921

    Google Scholar 

  19. Grasmueck M, Viggiano DA (2007) Integration of ground-penetrating radar and laser position sensors for real-time 3-D data fusion. IEEE Trans Geosci Remote Sens 45(1):130–137

    Article  Google Scholar 

  20. Li G, Xu J, Peng Y-N, Xia X-G (2007) Location and imaging of moving targets using nonuniform linear antenna array SAR. IEEE Trans Aerosp Electr Syst 43(3):1214–1220

    Google Scholar 

  21. Karayiannidis Y, Rovithakis G, Doulgeri Z (2007) Force/position tracking for a robotic manipulator in compliant contact with a surface using neuro-adaptive control. Automatica 43:1281–1288

    Article  MATH  MathSciNet  Google Scholar 

  22. Chang Y-C, Yen H-M (2011) Design of a robust position feedback tracking controller for flexible-joint robots. IET Control Theory Appl 5(2):351–363

    Google Scholar 

  23. Edwards PJ, King AP, Maurer CR Jr, De Cunha DA, Hawkes DJ, Hill DLG, Gaston RP, Fenlon MR, Jusczyzck A, Strong AJ, Chandler CL, Gleeson MJ (2000) Design and evaluation of a system for microscope-assisted guided interventions (MAGI). IEEE Trans Med Imaging 19(11):1082–1093

    Google Scholar 

  24. Huang Q-H, Yang Z, Wei H, Jin L-W, Wei G, Li X (2013) Linear tracking for 3-D medical ultrasound imaging. IEEE Trans Cybern 43(6):1747–1754

    Article  Google Scholar 

  25. Ren H, Rank D, Merdes M, Stallkamp J, Kazanzides P (2012) Multisensor data fusion in an integrated tracking system for endoscopic surgery. IEEE Trans Inf Technol Biomed 16(1):106–111

    Article  Google Scholar 

  26. Coutts GA, Gilderdale DJ, Chui M, Kasuboski L, DeSouza NM (1998) Integrated and interactive position tracking and imaging of interventional tools and internal devices, using small fiducial receiver coils. MRM 40908-913

    Google Scholar 

  27. Onik GM (1986) Method and apparatus for stereotaxic placement of probes in the body utilizing CT scanner localization. Patent number US4583538

    Google Scholar 

  28. Leser R, Baca A, Ogris G (2011) Local positioning systems in (game) sports. Sensors 11:9778–9797

    Article  Google Scholar 

  29. Hedley M, Zhang J (2012) Accurate wireless localization in sports. Computer 4(10):64–70

    Google Scholar 

  30. Arumugam DD, Griffin JD, Stancil DD, Ricketts DS (2014) Three-dimensional position and orientation measurements using magneto-quasistatic fields and complex image theory [measurements corner]. IEEE Antennas Propag Mag 56(1):160–173

    Google Scholar 

  31. Reichl T, Gardiazabal J, Navab N (2013) Electromagnetic servoing—a new tracking paradigm. IEEE Trans Med Imaging 32(8):1526–1535

    Google Scholar 

  32. Zhou S, Fei F, Zhang G, Mai JD, Yunhui L, Liou JYJ, Li WJ (2014) 2D human gesture tracking and recognition by the fusion of MEMS inertial and vision sensors. IEEE Sens J 14(4):1160–1170

    Google Scholar 

  33. Zheng B, Dong Y, Mullany B, Morse E, Davies A (2013) Positioning sensor by combining photogrammetry, optical projection and a virtual camera model. Meas Sci Technol 24:105106

    Google Scholar 

  34. Tsai C-C, Huang H-C, Chan C-K (2011) Parallel elite genetic algorithm and its application to global path planning for autonomous robot navigation. IEEE Trans Ind Electr 58(10):4813–4821

    Google Scholar 

  35. Zhou Z, Kavehrad M, Deng P (2012) Indoor positioning algorithm using light-emitting diode visible light communications. Opt Eng 51(8):085009-1

    Article  Google Scholar 

  36. Hwang J, Huh K, Lee D (2009) Vision-based vehicle detection and tracking algorithm design. Opt Eng 48(12):127201

    Article  Google Scholar 

  37. Loughry et al (1998) IEEE standard radar definitions

    Google Scholar 

  38. ASTM F2554 10 standard practice for measurement of positional accuracy of computer assisted surgical systems. http://www.astm.org/DATABASE.CART/STD_REFERENCE/F2554.htm

  39. Geyer E, Creamer P, D’Appolito JA, Rains R (1987) Characteristics and capabilities of navigation systems for unmanned untethered submersibles. In: Proceedings of the 1987 5th international symposium on unmanned untethered submersible technology, vol 5, pp 320–347

    Google Scholar 

  40. Keereweer S, Kerrebijn JDF, van Driel PBAA, Xie B, Kaijzel EL, Snoeks TJA, Que I, Hutteman M, van der Vorst JR, Mieog JSD, Vahrmeijer AL, van de Velde CJH, de Jong RJB, Löwik CWGM (2010) Optical image-guided surgery—where do we stand? Mol Imaging Biol

    Google Scholar 

  41. Rolland JP, Davis L, Baillot Y (2001) A survey of tracking technology for virtual environments. In: Barfield W, Caudell T (eds) Fundamentals of wearable computers and augmented reality. Lawrence Erlbaum, Mahwah, pp 67–112

    Google Scholar 

  42. van Krevelen DWF, Poelman R (2010) A survey of augmented reality technologies, applications and limitations. Int J Virtual Reality 9(2):1–20

    Google Scholar 

  43. Khoury HM, Vineet RK (2009) Evaluation of position tracking technologies for user localization in indoor construction environments. Autom Constr 18:444–457

    Article  Google Scholar 

  44. Suski II WC (2012) A study of environment noise in ultra-wideband indoor position tracking, Clemson University Dissertation

    Google Scholar 

  45. Weissleder R, Pittet MJ (2008) Imaging in the era of molecular oncology. Nature 452:580–589

    Google Scholar 

  46. Scassellati B (2007) How social robots will help us to diagnose treat, and understand autism. Springer Tracts Adv Robot 28:552–563

    Article  Google Scholar 

  47. Zaitsev M, Dold C, Sakas G, Hennig J, Speck O (2006) Magnetic resonance imaging of freely moving objects: prospective real-time motion correction using an external optical motion tracking system. Neuroimage 31:1038–1050

    Article  Google Scholar 

  48. Shen F, Shinohara K, Kumar D, Khemka A, Simoneau AR, Werahera PN, Li L, Guo Y, Narayanan R, Wei L, Barqawi A, Crawford ED, Davatzikos C, Suri JS (2008) Three-dimensional sonography with needle tracking role in diagnosis and treatment of prostate cancer. JUM 27(6):895–905

    Google Scholar 

  49. Wein W, Röper B, Nava N (2007) Integrating diagnostic B-mode ultrasonography into CT-based radiation treatment planning. IEEE Trans Med Imaging 26(6):866–879

    Google Scholar 

  50. Zhang H, Banovac F, Lin R, Glossop N, Wood BJ, Lindisch D, Levy E, Cleary K (2006) Electromagnetic tracking for abdominal interventions in computer aided surgery. Comput Aided Surg 11(3):127–136

    Article  Google Scholar 

  51. Cleary K, Peters TM (2010) Image-guided interventions: technology review and clinical applications. Ann Rev Biomed Eng 12:119–142 (volume publication date August 2010)

    Google Scholar 

  52. Harley L, R S, Gandy M, Harbert S, Britton D (2011) The design of an interactive stroke rehabilitation gaming system, human-computer interaction. Users Appl Lect. Notes Comput. Sci. 6764:167–173

    Article  Google Scholar 

  53. Xu G, Song A, Li H (2011) Adaptive impedance control for upper-limb rehabilitation robot using evolutionary dynamic recurrent fuzzy neural network. J Intell Robot Syst 62(3–4):501–525

    Google Scholar 

  54. González-Ortega D, Dıaz-Pernas FJ, Martınez-Zarzuela M, Antón-Rodrı́guez M, Dı́ez-Higuera JF, Boto-Giralda D (2010) Real-time hands, face and facial features detection and tracking: application to cognitive rehabilitation tests monitoring. J Netw Comput Appl 33(4):447–466

    Article  Google Scholar 

  55. Kadour MJ, Noble JA (2009) Assisted-freehand ultrasound elasticity imaging, ultrasonics. IEEE Trans Ferroelectr Freq Control 56(1):36–43

    Google Scholar 

  56. De Fiori E, Rampinelli C, Turco F, Bonello L, Bellomi M (2010) Role of operator experience in ultrasound-guided fine-needle aspiration biopsy of the thyroid. Radiol Med (Torino) 115(4):612–618

    Article  Google Scholar 

  57. Ward ST, Shepherd JA, Khalil H (2010) Freehand versus ultrasound-guided core biopsies of the breast: reducing the burden of repeat biopsies in patients presenting to the breast clinic. Breast 19(2):105–108

    Article  Google Scholar 

  58. Noorkoiv M, Nosaka K, Blazevich AJ (2010) Assessment of quadriceps muscle cross-sectional area by ultrasound extended-field-of-view imaging. Eur J Appl Physiol

    Google Scholar 

  59. Hossack JA, Pang L (2010) Medical diagnostic ultrasound imaging methods for extended field of view. Patent number US 7837624 B1

    Google Scholar 

  60. Gee A, Prager R, Treece G, Cash C, Berman L (2014) Processing and visualizing three-dimensional ultrasound data. Br J Radiol 77(suppl 2):S186–S193

    Google Scholar 

  61. Birkfellner FN et al (1998) Calibration of tracking systems in a surgical environment. IEEE Trans Med Imaging 17(5): 737–742. http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=15866

  62. Greg W, Bishop G, Vicci L, Brumback S, Keller K (2001) High-performance wide-area optical tracking. The hiball tracking system. Presence Teleoperators Virtual Environ (10:1)

    Google Scholar 

  63. Frannz M, Michael G (1996) CCD-camera based optical beacon tracking for virtual and augmented reality. Comput Graph Forum 15(3):207–216

    Article  Google Scholar 

  64. De Amici S, Sanna A, Lamberti F, Pralio B (2010) A Wii remote-based infrared-optical tracking system. Entertain Comput 1(3–4):119–124

    Article  Google Scholar 

  65. Edward R, Proter R, Drummond T (2010) Faster and better: a machine learning approach to corner detection. IEEE Trans Pattern Anal Mach Intell 32(1):105–119

    Google Scholar 

  66. Lowe DG (2004) Method and apparatus for identifying scale invariant features in an image and use of same for locating an object in an image. Patent number US6711293 B1

    Google Scholar 

  67. Bay H, Ess A, Tuytelaars T, Van Gool L (2008) Speeded-up robust features (SURF). Comput Vis Image Underst 110(3):346–359

    Article  Google Scholar 

  68. Lorin PM, Sun J, Morton NA (2007) Accuracy of an optical active-marker system to track the relative motion of rigid bodies. J Biomech 40(3):682–685

    Article  Google Scholar 

  69. Barandiaran I, Paloc C, Graña M (2010) Real-time optical markerless tracking for augmented reality applications. J Real-Time Image Proc 5(2):129–138

    Article  Google Scholar 

  70. http://www.ndigital.com/medical/products/polaris-family/features/measurement-volume/

  71. http://www.ndigital.com/medical/products/polaris-family/features/vicra-measurement-volume/

  72. Frederick HR, Ernest BB, Terry OS, Herbert RJ (2007) Magnetic position and orientation tracking system. IEEE Trans Aerosp Electr Syst AES-15(5):709–718 (document from ascension tech on http://www.ascension-tech.com/docs/ASCWhitePaperDCvAC.pdf)

  73. Henry H, Yuichi M (2014) Latency and distortion of electromagnetic trackers for augmented reality systems. Morgan and Claypool Publishers, San Rafael

    Google Scholar 

  74. Ernest BB (1990) Device for quantitatively measuring the relative position and orientation of two bodies in the presence of metals utilizing direct current magnetic fields. Patent number US4945305 A http://www.freescale.com/webapp/sps/site/overview.jsp?code=SNSMEMSOVERVIEW

  75. Higgins M, Halstead PD, Snyder-Mackler L, Barlow D (2007) Measurement of impact acceleration: mouthpiece accelerometer versus helmet accelerometer. J Athletic Training 42(1):5–10

    Google Scholar 

  76. Austin H, Bill D (2013) Electric motors and drives: fundamentals, types and applications, 4th edn. Newnes Publisher, Boston

    Google Scholar 

  77. Frank LL, Daren MD, Chaouki TA (2003) Robot manipulator control: theory and practice. CRC Press, Boston

    Google Scholar 

  78. Peter IC (1996) Visual control of robots: high-performance visual servoing. Research Studies Press, Chichester

    Google Scholar 

  79. Chaumette F, Hutchinson S (2006) Visual servo control, part I: basic approaches. IEEE Robot Autom Mag 13(4):82–90

    Article  Google Scholar 

  80. Chaumette F, Hutchinson S (2007) Visual servo control, part II: advanced approaches. IEEE Robot Autom Mag 14(1):109–118

    Article  Google Scholar 

  81. Hogue A, Jenkin MR, Allison RS (2004) An optical-inertial tracking system for fully-enclosed VR displays. In: CRV ‘04 proceedings of the 1st Canadian conference on computer and robot vision. IEEE Computer Society, pp 22–29

    Google Scholar 

  82. Goldsmith AM, Pedersen PC, Szabo TL (2008) An inertial-optical tracking system for portable, quantitative, 3D ultrasound. IEEE Int Ultrason Symp 45–49

    Google Scholar 

  83. Neil A, Ens S, Pelletier R, Jarus T, Rand D (2013) Sony playStation EyeToy elicits higher levels of movement than the Nintendo Wii: implications for stroke rehabilitation. Eur J Phys Rehab Med 49(1):13–21

    Google Scholar 

  84. Parry I, Carbullido C, Kawada J, Bagley A, Sen S, Greenhalgh D, Palmieri T (2014) Keeping up with video game technology: objective analysis of Xbox KinectTM and PlayStation 3 MoveTM for use in burn rehabilitation. J Int Soc Burn Injuries 40(5):852–859

    Article  Google Scholar 

  85. O’Hara K, Dastur N, Carrell T, Gonzalez G, Sellen A, Penney G, Varnavas A, Mentis H, Criminisi A, Corish R, Rouncefield M (2014) Touchless interaction in surgery. Commun ACM 57(1):70–77

    Article  Google Scholar 

  86. San José-Estépar R, Martín-Fernández M, Caballero-Martínez PP, Alberola-López C, Ruiz-Alzola J (2003) A theoretical framework to three-dimensional ultrasound reconstruction from irregularly sampled data. Ultrasound Med Biol 29(2):255–269

    Google Scholar 

  87. Prager RW, Ijaz UZ, Gee AH, Treece GM (2010) Three-dimensional ultrasound imaging. In: Proc Inst Mech Eng Part H: J Eng Med 224(2):193–223

    Google Scholar 

  88. Nelson TR, Pretorius DH (1998) Three-dimensional ultrasound imaging. Ultrasound Med Biol 24(9):1243–1270

    Article  Google Scholar 

  89. Whitmore III, Willet F, Barzell WE, Wilson RF (1999) Ultrasound probe support and stepping device. US Patent 5,931,786

    Google Scholar 

  90. Fenster et al (2001) Three-dimensional ultrasound imaging. Phys Med Biol 46(5):R67–99

    Google Scholar 

  91. Solberg OV Lindseth F, Torp H, Blake RE, Nagelhus Hernes TA (2007) Freehand 3D ultrasound reconstruction algorithms—a review. Ultrasound Med Biol 33(7):991–1009

    Google Scholar 

  92. Gee A, Prager R, Treece G, Berman L (2003) Engineering a freehand 3D ultrasound system. Pattern Recognit Lett 24(4–5):757–777

    Google Scholar 

  93. Huang L, Matsuura K, Yamane H, Sezaki K (2005) Enhancing wireless location privacy using silent period. In: Wireless communications and networking conference, IEEE, vol 2, pp 1187–1192

    Google Scholar 

  94. Dewi DEO et al (2010) An improved olympic hole-filling method for ultrasound volume reconstruction of human spine. Int J E-Health Med Commun (IJEHMC)

    Google Scholar 

  95. Rohling R, Gee A, Berman L (1997) Three-dimensional spatial compounding of ultrasound images. Med Image Anal 1(3):177–193

    Article  Google Scholar 

  96. Gobbi DG, Peters TM (2002) Interactive intra-operative 3D ultrasound reconstruction and visualization. In: Medical image computing and computer-assisted intervention—MICCAI 2002, lecture notes in computer science, vol 2489. pp 156–163

    Google Scholar 

  97. Nelson TR, Pretorius DH (1997) Interactive acquisition, analysis, and visualization of sonographic volume data. Int J Imaging Sys Technol (Special issue: Acoustical Tomography) 8(1):26–37

    Google Scholar 

  98. Ohbuchi R, Chen D, Fuchs H (1992) Incremental volume reconstruction and rendering for 3-D ultrasound imaging. In: Proceedings of SPIE 1808, Visualization in Biomedical Computing '92, 312 (September 22, 1992). doi:10.1117/12.131087

  99. Hottier F, Billon AC (1990) 3D echography: status and perspective, 3D imaging in medicine. In: NATO ASI Series, vol 60, pp 21–41

    Google Scholar 

  100. Wein W, Röper B, Nava N (2007) Integrating diagnostic B-mode ultrasonography into CT-based radiation treatment planning. IEEE Trans Med Imaging 26(6):

    Google Scholar 

  101. Brendel et al. (2002) Registration of 3D CT and ultrasound datasets of the spine using bone structures. Comput Aided Surg (Special issue: papers from the second annual meeting of the international society for computer assisted orthopaedic surgery) 7(3):146–155

    Google Scholar 

  102. Ewertsen et al (2013) Real-time image fusion involving diagnostic ultrasound. Am J Roentgenol 200:W249–W255

    Google Scholar 

  103. Wendler et al (2007) Real-time fusion of ultrasound and gamma probe for navigated localization of liver metastases. In: Medical image computing and computer-assisted intervention—MICCAI 2007, lecture notes in computer science, vol 4792, pp 252–260

    Google Scholar 

  104. Salomon et al (2013) MRI and ultrasound fusion imaging for prenatal diagnosis. Am J Obstet Gynecol 209(2):148(e1–148):e9

    Google Scholar 

  105. Behairy et al (2010) Magnetic resonance imaging in fetal anomalies: what does it add to 3D and 4D US? Eur J Radiol 74(1):250–255

    Google Scholar 

  106. Alamo L, Laswad T, Schnyder P, Meuli R, Vial Y, Osterheld MC, Gudinchet F (2010) Fetal MRI as complement to US in the diagnosis and characterization of anomalies of the genito-urinary tract. Eur J Radiol 76(2):258–264

    Google Scholar 

  107. Pugash D, Brugger PC, Bettelheim D, Prayer D (2008) Prenatal ultrasound and fetal MRI: the comparative value of each modality in prenatal diagnosis. Eur J Radiol 68(2):214–226

    Google Scholar 

  108. Lindseth F, Langø T, Selbekk T, Hansen R, Reinertsen I, Askeland C (2003) Ultrasound-based guidance and therapy. In: Advancements and breakthroughs in ultrasound imaging. pp 27–82

    Google Scholar 

  109. Gronningsaeter A, Olstad B, Unsgaard G (2000) Method for ultrasound guidance during clinical procedures. US Patent 6,019,724

    Google Scholar 

  110. Van der Giessen et al (2010) 3D fusion of intravascular ultrasound and coronary computed tomography for in-vivo wall shear stress analysis: a feasibility study. Int J Cardiovasc Imaging 26(7):781–796

    Google Scholar 

  111. Bourantas CV et al (2003) ANGIOCARE: an automated system for fast three-dimensional coronary reconstruction by integrating angiographic and intracoronary ultrasound data. Catheter Cardiovasc Interv 72(2):166–175

    Google Scholar 

  112. Cothren et al (2000) Three-dimensional reconstruction of the coronary artery wall by image fusion of intravascular ultrasound and bi-plane angiography. Int J Cardiovasc Imaging 16(2):69–85

    Google Scholar 

  113. Wahle et al (1999) Geometrically correct 3-D reconstruction of intravascular ultrasound images by fusion with biplane angiography-methods and validation. IEEE Trans Med Imaging 18(8):686–699

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dyah Ekashanti Octorina Dewi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Octorina Dewi, D.E., Mohd. Fadzil, M., Mohd. Faudzi, A.‘., Supriyanto, E., Lai, K.W. (2015). Position Tracking Systems for Ultrasound Imaging: A Survey. In: Lai, K., Octorina Dewi, D. (eds) Medical Imaging Technology. Lecture Notes in Bioengineering. Springer, Singapore. https://doi.org/10.1007/978-981-287-540-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-287-540-2_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-287-539-6

  • Online ISBN: 978-981-287-540-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics