Skip to main content

The Malaria Landscape: Mosquitoes, Transmission, Landscape, Insecticide Resistance, and Integrated Control in Thailand

  • Chapter
Socio-Ecological Dimensions of Infectious Diseases in Southeast Asia

Abstract

This chapter presents results on the effect of land use on malaria vector density, species diversity, and insecticide resistance in northern Thailand. Entomological data from 1977 to 1999 was analysed to understand spatio-temporal variations in vector density and potential effects on malaria transmission. Landscape analysis can potentially be used as a tool in vector control strategy development, particularly to understand local vector behaviour and habitat characteristics for stratification of vector control areas. Our results show that an increase in landscape diversity, particularly forest fragmentation, reduces malaria vector diversity and density. Such land use changes in non-malaria transmission areas were the potential cause for reductions in malaria mosquito densities. Similar land use changes were not observed in areas with permanent malaria transmission. The landscape analysis further shows that agricultural intensification increases the likelihood of insecticide resistance development in malaria mosquitoes. We therefore argue for intersectoral collaboration, especially between the public health and agricultural sectors, to develop and implement integrated insecticide resistance management plans and integrated control. Integration of pest and vector control strategies should build on the integrated pest and vector management (IPVM) strategies described in this chapter. Such a strategy should be implemented through the Farmer Field School approach. For future research topics we suggest studies on the bionomics of the sibling species of the malaria vectors in the region to more effectively implement vector control actions. Furthermore, the effect of IPVM strategies on vector populations and disease outcome should be evaluated through large-scale trials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ampunpong C (1996) Analysis of tangerine handling and marketing in Thailand. Thesis No AE-96-36, Asian Institute of Technology

    Google Scholar 

  • Apiwathnasorn C, Prommongkol S, Samung Y, Limrat D, Rojruthai BJ, Entomol M (2002) Potential for Anopheles campestris (Diptera: Culicidae) to transmit malaria parasites in Pa Rai subdistrict (Aranyaprathet, Sa Kaeo province), Thailand. J Med Entomol 39(4):583–586

    Google Scholar 

  • Baimai V (1988) Population cytogenetics of the malaria vector Anopheles leucosphyrus group. Southeast Asian J Trop Med Public Health 19(4):667–680

    CAS  PubMed  Google Scholar 

  • Baimai V, Green CA, Andre RG, Harrison BA, Peyton EL (1984) Cytogenetic studies of some species complexes of Anopheles in Thailand and Southeast Asia. Southeast Asian J Trop Med Public Health 15(4):536–546

    CAS  PubMed  Google Scholar 

  • Beier JC, Muller GC, Gu W, Arheart KL, Schlein Y (2012) Attractive toxic sugar bait (ATSB) methods decimate populations of Anopheles malaria vectors in arid environments regardless of the local availability of favoured sugar-source blossoms. Malar J 11:31. doi:10.1186/1475-2875-11-31

    PubMed Central  PubMed  Google Scholar 

  • Bhumiratana A, Sorosjinda-Nunthawarasilp P, Kaewwaen W, Maneekan P, Pimnon S (2013) Malaria-associated rubber plantations in Thailand. Travel Med Infect Dis 11(1):37–50. doi:10.1016/j.tmaid.2012.11.002

    PubMed  Google Scholar 

  • Brogdon WG, Beach RF, Stewart JM, Castanaza L (1988) Microplate assay analysis of the distribution of organophosphate and carbamate resistance in Guatemalan Anopheles albimanus. Bull World Health Organ 66(3):339–346

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brown H, Duik-Wasser M, Andreadis T, Fish D (2008) Remotely-sensed vegetation indices identify mosquito clusters of West Nile virus vectors in an urban landscape in the northeastern United States. Vector Borne Zoonotic Dis 8(2):197–206. doi:10.1089/vbz.2007.0154

    PubMed  Google Scholar 

  • Bureau of Vector Borne Disease (2013) Annual Vector Borne Disease Reports. Bureau of Vector Borne Disease, Department of Disease Control, Ministry of Public Health, Nonthaburi

    Google Scholar 

  • Chalermphol J, Shivakoti GP (2009) Pesticide use and prevention practices of tangerine growers in northern Thailand. J Agric Educ Ext 15(1):21–38

    Google Scholar 

  • Chapin G, Wasserstrom R (1981) Agricultural production and malaria resurgence in Central America and India. Nature 293(5829):181–185

    CAS  PubMed  Google Scholar 

  • Chareonviriyaphap T, Aum-aung B, Ratanatham S (1999) Current insecticide resistance patterns in mosquito vectors in Thailand. Southeast Asian J Trop Med Public Health 30(1):184–194

    Google Scholar 

  • Chareonviriyaphap T, Bangs MJ, Ratanatham S (2000) Status of malaria in Thailand. Southeast Asian J Trop Med Public Health 31(2):225–237

    CAS  PubMed  Google Scholar 

  • Chareonviriyaphap T, Prabaripai A, Bangs MJ (2004) Excito-repellency of deltamethrin on the malaria vectors, Anopheles minimus, Anopheles dirus, Anopheles sawadwongporni, and Anopheles maculatus, in Thailand. J Am Mosq Control Assoc 20(1):45–54

    CAS  PubMed  Google Scholar 

  • Childs DZ, Cattadori IM, Suwonkerd W, Prajakwong S, Boots M (2006) Spatiotemporal patterns of malaria incidence in northern Thailand. Trans R Soc Trop Med Hyg 100(7):623–631. doi:10.1016/j.trstmh.2005.09.011

    CAS  PubMed  Google Scholar 

  • Cid CV, Estallo EL, Almiron WR, Contigiani MS, Spinsanti LI (2013) Landscape determinants of Saint Louis encephalitis human infections in Cordoba city, Argentina during 2010. Acta Trop 125(3):303–308. doi:10.1016/j.actatropica.2012.12.005

    Google Scholar 

  • Coleman RE, Sithiprasasna R, Kankaew P, Kiaattiut C, Ratanawong S, Khuntirat B et al (2002) Naturally occurring mixed infection of Plasmodium vivax VK210 and P. vivax VK247 in anopheles mosquitoes (Diptera: Culicidae) in western Thailand. J Med Entomol 39(3):556–559

    PubMed  Google Scholar 

  • Congpuon K, Satimai W, Sujariyakul A, Intanakom S, Harnpitakpong W, Pranuth Y et al (2011) In vivo sensitivity monitoring of chloroquine for the treatment of uncomplicated vivax malaria in four bordered provinces of Thailand during 2009–2010. J Vector Borne Dis 48(4):190–196

    PubMed  Google Scholar 

  • Diabate A, Baldet T, Chandre F, Akoobeto M, Guiguemde TR, Darriet F et al (2002) The role of agricultural use of insecticides in resistance to pyrethroids in Anopheles gambiae s.l. in Burkina Faso. Am J Trop Med Hyg 67(6):617–622

    CAS  PubMed  Google Scholar 

  • Dunning JB, Danielson BJ, Pulliam HR (1992) Ecological processes that affect populations in complex landscapes. Oikos 65(1):169–175. doi:10.2307/3544901

    Google Scholar 

  • Durnez JB, Coosemans M (2013) Residual transmission of malaria: an old issue for new approaches. In: Manguin S (ed) Anopheles mosquitoes – new insights into malaria vectors. Intech, Croatia. Open access book: http://www.intechopen.com/books/anopheles-mosquitoes-new-insights-into-malaria-vectors

  • Ekbom B (2000) Interchanges of insects between agricultural and surrounding landscapes. In: Ekbom B, Irwin ME, Robert Y (eds) Interchanges of insects between agricultural and surrounding landscapes. Kluwer, Dordrecht, pp 1–3

    Google Scholar 

  • Ekstrom G, Ekbom B (2011) Pest control in agro-ecosystems: an ecological approach. Crit Rev Plant Sci 30(1-2):74–94. doi:10.1080/07352689.2011.554354

    CAS  Google Scholar 

  • Elkington J, Ingkasuwan P (1988) Natural resources of South East Asia. Oxford University Press, Oxford

    Google Scholar 

  • Fane M, Cisse O, Traore CS, Sabatier P (2012) Anopheles gambiae resistance to pyrethroid-treated nets in cotton versus rice areas in Mali. Acta Trop 122(1):1–6. doi:10.1016/j.actatropica.2011.11.013

    CAS  PubMed  Google Scholar 

  • FAO (1999) State of the world’s forests 1999. Food and Agricultural Organization, Rome

    Google Scholar 

  • Garros C, Marchand RP, Quang NT, Hai NS, Manguin S (2005) First record of Anopheles minimus C and significant decrease of An. minimus A in central Vietnam. J Am Mosq Control Assoc 21(2):139–143

    PubMed  Google Scholar 

  • Garros C, Van Bortel W, Trung HD, Coosemans M, Manguin S (2006) Review of the Minimus complex of Anopheles, main malaria vector in Southeast Asia: from taxonomic issues to vector control strategies. Trop Med Int Health 11(1):102–114. doi:10.1111/j.1365-3156.2005.01536.x

    CAS  PubMed  Google Scholar 

  • Garros C, Van Nguyen C, Trung HD, Van Bortel W, Coosemans M, Manguin S (2008) Distribution of Anopheles in Vietnam, with particular attention to malaria vectors of the Anopheles minimus complex. Malar J 7:11. doi:10.1186/1475-2875-7-11

    PubMed Central  PubMed  Google Scholar 

  • Georghiou GP, Ariaratnam V, Breeland SG (1972) Development of resistance to carbamates and organophosphorus compounds in Anopheles albimanus in nature. Bull World Health Organ 46(4):551–554

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gould F, Stinner RE (1984) Insects in heterogeneous habitats. In: Huffaker CB, Tabb RL (eds) Ecological entomology. Wiley, New York, pp 427–449

    Google Scholar 

  • Green CA, Rattanarithikul R, Pongparit S, Sawadwongporn P, Baimai V (1991) A newly-recognized vector of human malarial parasites in the Oriental region, Anopheles (Cellia) pseudowillmori (Theobald, 1910). Trans R Soc Trop Med Hyg 85(1):35–36

    CAS  PubMed  Google Scholar 

  • Green CA, Rattanarithikul R, Charoensub A (1992) Population genetic confirmation of species status of the malaria vectors Anopheles willmori and An. pseudowillmori in Thailand and chromosome phylogeny of the Maculatus group of mosquitoes. Med Vet Entomol 6(4):335–341

    CAS  PubMed  Google Scholar 

  • Harbach RE, Parkin E, Chen B, Butlin RK (2006) Anopheles (Cellia) minimus Theobald (Diptera: Culicidae): neotype designation, characterization, and systematics. Proc Entomol Soc Wash 108:198–209

    Google Scholar 

  • Harbach RE, Garros C, Manh ND, Manguin S (2007) Formal taxonomy of species C of the Anopheles minimus sibling species complex (Diptera: Culicidae). Zootaxa 1654:41–54

    Google Scholar 

  • Harrison BA (1980) Medical entomology studies – XIII. The Myzomyia Series of Anopheles (Cellia) in Thailand, with emphasis on intra-interspecific variations (Diptera: Culicidae). Contr Am Ent Inst 17:1–195

    Google Scholar 

  • Hemingway J, Ranson H (2000) Insecticide resistance in insect vectors of human disease. Annu Rev Entomol 45:371–391. doi:10.1146/annurev.ento.45.1.371

    CAS  PubMed  Google Scholar 

  • Hemme RR, Thomas CL, Chadee DD, Severson DW (2010) Influence of urban landscapes on population dynamics in a short-distance migrant mosquito: evidence for the dengue vector Aedes aegypti. PLoS Negl Trop Dis 4(3), e634. doi:10.1371/journal.pntd.0000634

    PubMed Central  PubMed  Google Scholar 

  • Hii J, Rueda LM (2013) Malaria vectors in the Greater Mekong Subregion: overview of malaria vectors and remaining challenges. Southeast Asian J Trop Med Public Health 44(Suppl 1):73–165; discussion 306–167

    PubMed  Google Scholar 

  • Ijumba JN, Mosha FW, Lindsay SW (2002) Malaria transmission risk variations derived from different agricultural practices in an irrigated area of northern Tanzania. Med Vet Entomol 16(1):28–38

    CAS  PubMed  Google Scholar 

  • Jaichapor B, Kengluecha A, Rongnoparut P, Rueda LM, Jones JW, Sithiprasasna R (2005) Morphological variations of Anopheles minimus A in Tak Province, Thailand. Southeast Asian J Trop Med Public Health 36(3):609–615

    PubMed  Google Scholar 

  • Keiser J, Singer BH, Utzinger J (2005) Reducing the burden of malaria in different eco-epidemiological settings with environmental management: a systematic review. Lancet Infect Dis 5(11):695–708. doi:10.1016/s1473-3099(05)70268-1

    PubMed  Google Scholar 

  • Konchom S, Singhasivanon P, Kaewkungwal J, Chupraphawan S, Thimasarn K, Kidson C et al (2003) Trend of malaria incidence in highly endemic provinces along the Thai borders, 1991–2001. Southeast Asian J Trop Med Public Health 34(3):486–494

    PubMed  Google Scholar 

  • Kondrashin AV, Jung RK, Akiyama J (1991) Ecological aspects of forest malaria in Southeast Asia. An informal consultative meeting WHO/MRC, World Health Organization/Malaria Research Centre, New Delhi, 18–22 Feb 1991, pp 1–28

    Google Scholar 

  • Lawpoolsri S, Chavez IF, Yimsamran S, Puangsa-Art S, Thanyavanich N, Maneeboonyang W et al (2010) The impact of human reservoir of malaria at a community-level on individual malaria occurrence in a low malaria transmission setting along the Thai-Myanmar border. Malar J 9:143. doi:10.1186/1475-2875-9-143

    PubMed Central  PubMed  Google Scholar 

  • Limrat D, Rojruthai B, Apiwathnasorn C, Samung Y, Prommongkol S (2001) Anopheles barbirostris/campestris as a probable vector of malaria in Aranyaprathet, Sa Kaeo Province. Southeast Asian J Trop Med Public Health 32(4):739–744

    CAS  PubMed  Google Scholar 

  • Linton YM, Harbach RE, Seng CM, Anthony TG, Matusop A (2001) Morphological and molecular identity of Anopheles (Cellia) sundaicus (Diptera: Culicidae), the nominotypical member of a malaria vector species complex in Southeast Asia. Syst Entomol 26(3):357–366. doi:10.1046/j.1365-3113.2001.00153.x

    Google Scholar 

  • Linton YM, Dusfour I, Howard TM, Ruiz F, Nguyen DM, Trung HD et al (2005) Anopheles (Cellia) epiroticus (Diptera: Culicidae), a new malaria vector species in the Southeast Asian Sundaicus Complex. Bull Entomol Res 95(4):329–339. doi:10.1079/ber2005364

    PubMed  Google Scholar 

  • Malaria Division (1993) Thailand country report on malaria control strategy. Ministry of Public Health, Bangkok

    Google Scholar 

  • Malaria Division (1998) Annual report of Ministry of Public Health. Thai Government, Bangkok

    Google Scholar 

  • Malikul S (1988) The current situation of the anti-malaria programme in Thailand. Southeast Asian J Trop Med Public Health 19(3):355–359

    CAS  PubMed  Google Scholar 

  • Manguin S, Carnevale P, Mouchet F (2008a) Biodiversity of malaria. John Libbey Eurotext, Montrouge

    Google Scholar 

  • Manguin S, Garros C, Dusfour I, Harbach RE, Coosemans M (2008b) Bionomics, taxonomy, and distribution of the major malaria vector taxa of Anopheles subgenus Cellia in Southeast Asia: an updated review. Infect Genet Evol 8(4):489–503. doi:10.1016/j.meegid.2007.11.004

    CAS  PubMed  Google Scholar 

  • Manh CD, Beebe NW, Van VN, Quang TL, Lein CT, Nguyen DV et al (2010) Vectors and malaria transmission in deforested, rural communities in north-central Vietnam. Malar J 9:259. doi:10.1186/1475-2875-9-259

    PubMed Central  PubMed  Google Scholar 

  • McGarigal K, Marks BJ (1995) FRAGSTATS: spatial pattern analysis for quantifying landscape structure. General technical report PNW-GTR-351. US Department of Agriculture, Forest Servie, Pacific Northwest Research Station, Portland

    Google Scholar 

  • McKenzie JA (1996) Ecological and evolutionary aspects of insecticide resistance, Environmental intelligence unit. RG Landes, Austin

    Google Scholar 

  • Meide L, Xuezhong W, Tongyan Z, Du Z, Yande D, Baolin L (2008) Analysis of the relationship between density and dominance of Anopheles minimus (Diptera: Culicidae) with environmental parameters in southern Yunnan Province, Peoples Republic of China. J Med Entomol 45(6):1007–1010

    PubMed  Google Scholar 

  • Muenworn V, Akaratanakul P, Bangs MJ, Parbaripai A, Chareonviriyaphap T (2006) Insecticide-induced behavioral responses in two populations of Anopheles maculatus and Anopheles sawadwongporni, malaria vectors in Thailand. J Am Mosq Control Assoc 22(4):689–698. doi:10.2987/8756-971x(2006)22[689:ibritp]2.0.co;2

    CAS  PubMed  Google Scholar 

  • Muirhead Thompson RC (1940a) Studies on the behaviour of Anopheles minimus. Part I. The selection of the breeding place and the influence of light and shade. J Malar Inst India 3:265–294

    Google Scholar 

  • Muirhead Thompson RC (1940b) Studies on the behaviour of Anopheles minimus. Part II. The influence of water movement on the selection of the breeding place. J Malar Inst India 3:295–325

    Google Scholar 

  • Muller GC, Beier JC, Traore SF, Toure MB, Traore MM, Bah S et al (2010) Successful field trial of attractive toxic sugar bait (ATSB) plant-spraying methods against malaria vectors in the Anopheles gambiae complex in Mali, West Africa. Malar J 9:210. doi:10.1186/1475-2875-9-210

    PubMed Central  PubMed  Google Scholar 

  • Muturi EJ, Muriu S, Shililu J, Mwangangi J, Jacob BG, Mbogo C et al (2008) Effect of rice cultivation on malaria transmission in central Kenya. Am J Trop Med Hyg 78(2):270–275

    PubMed  Google Scholar 

  • Naranjo DP, Qualls WA, Muller GC, Samson DM, Roque D, Alimi T et al (2013) Evaluation of boric acid sugar baits against Aedes albopictus (Diptera: Culicidae) in tropical environments. Parasitol Res 112(4):1583–1587. doi:10.1007/s00436-013-3312-8

    PubMed  Google Scholar 

  • Nguyen D, Nguyen M, Le V, Ho L, Tran A, Nguyen K et al (2009) Pesticides, agriculture and health in Vietnam. Identification of potential implementation sites for integrated pest and vector management. Bioforsk RAPPORT 4(105):86s, Ås. http://www.bioforsk.no/ikbViewer/page/tjenester/publikasjoner/publikasjon?p_document_id=61663

  • Nuthsathapana S, Sawadwongphorn P, Chitprarop U, Cullen JR, Gass RF, Green CA (1986a) A mark-release-recapture demonstration of host-preference heterogeneity in Anopheles minimus Theobald (Diptera: Culicidae) in a Thai village. Bull Entomol Res 76:313–320

    Google Scholar 

  • Nuthsathapana S, Sawadwongphorn P, Chitprarop U, Cullen JR (1986b) The behaviour of Anopheles minimus Theobald (Diptera: Culicidae) subjected to differing levels of DDT selection pressure in northern Thailand. Bull Entomol Res 76:303–312

    Google Scholar 

  • Obsomer V, Defourny P, Coosemans M (2007) The Anopheles dirus complex: spatial distribution and environmental drivers. Malar J 6. doi:10.1186/1475-2875-6-26

  • ODPC (2012) Annual report 2012. Office of Disease Prevention and Control no. 10. Ministry of Public Health, Chiang Mai

    Google Scholar 

  • Overgaard HJ (2006) Malaria mosquito resistance to agricultural insecticides: risk area mapping in Thailand. Research report 103. International Water Management Institute, Colombo. ISSN 1026–0862. http://www.iwmi.cgiar.org/pubs/pub103/RR103.pdf

  • Overgaard HJ, Tsuda Y, Suwonkerd W, Takagi M (2002) Characteristics of Anopheles minimus (Diptera: Culicidae) larval habitats in northern Thailand. Environ Entomol 31(1):134–141. doi:10.1603/0046-225x-31.1.134

    Google Scholar 

  • Overgaard HJ, Ekbom B, Suwonkerd W, Takagi M (2003) Effect of landscape structure on anopheline mosquito density and diversity in northern Thailand: implications for malaria transmission and control. Landsc Ecol 18(6):605–619. doi:10.1023/a:1026074910038

    Google Scholar 

  • Overgaard HJ, Sandve SR, Suwonkerd W (2005) Evidence of anopheline mosquito resistance to agrochemicals in northern Thailand. Southeast Asian J Trop Med Public Health 36(Suppl 4):152–157

    PubMed  Google Scholar 

  • Peyton EL (1989) A new classification for the Leucosphyrus group of Anopheles (Cellia). Mosq Syst 21:97–205

    Google Scholar 

  • Pontius JC, Dilts R, Bartlett A (2002) From farmer field school to community IPM: ten years of IPM training in Asia. Food and Agricultural Organization Regional Office for Asia and the Pacific, RAP/2002/15, Bangkok, 106 pp

    Google Scholar 

  • Pothikasikorn J, Overgaard H, Ketavan C, Visetson S, Bangs MJ, Chareonviriyaphap T (2007) Behavioral responses of malaria vectors, Anopheles minimus complex, to three classes of agrochemicals in Thailand. J Med Entomol 44(6):1032–1039

    PubMed  Google Scholar 

  • Ranson H, N’Guessan R, Lines J, Moiroux N, Nkuni Z, Corbel V (2011) Pyrethroid resistance in African anopheline mosquitoes: what are the implications for malaria control? Trends Parasitol 27(2):91–98. doi:10.1016/j.pt.2010.08.004

    CAS  PubMed  Google Scholar 

  • Rattanarithikul R, Panthusiri P (1994) Illustrated keys to the medically important mosquitos of Thailand. Southeast Asian J Trop Med Public Health 25(Suppl 1):1–66

    PubMed  Google Scholar 

  • Rattanarithikul R, Mongkolpanya K, Noigamol C, Chanaimongkol S, Mahapibul P, Nakngen S (1994) Dry season distribution of mosquito larvae in the bed of the Mekong river, Northeastern Thailand. J Am Mosq Control Assoc 10(2):197–201

    Google Scholar 

  • Rattanarithikul R, Green CA, Panyim S, Noigamol C, Chanaimongkol S, Mahapibul P (1995) Larval habitats of malaria vectors and other Anopheles mosquitoes around a transmission focus in northwestern Thailand. J Am Mosq Control Assoc 11(4):428–433

    CAS  PubMed  Google Scholar 

  • Rattanarithikul R, Harrison BA, Harbach RE, Panthusiri P, Coleman RE, Panthusiri P (2006) Illustrated keys to the mosquitoes of Thailand. IV. Anopheles. Southeast Asian J Trop Med Public Health 37(Suppl 2):1–128

    Google Scholar 

  • RBM (2011) Strategies for prevention of outdoor transmission of malaria. Roll back malaria vector control working group (VCWG) technical workshop report. 2nd annual strategy meeting Phnom Penh, 28 Nov 2011. http://www.rbm.who.int/partnership/wg/wg_itn/docs/ws2/minutes2outdoorTransmissionWSmeeting.pdf. Accessed May 2013

  • Ree HI (2005) Studies on Anopheles sinensis, the vector species of vivax malaria in Korea. Korean J Parasitol 43(3):75–92

    PubMed Central  PubMed  Google Scholar 

  • Reid JA (1962) The Anopheles barbirostris group (Diptera: Culicidae). Bull Entomol Res 53:1–57

    Google Scholar 

  • Ritthison W, Tainchum K, Manguin S, Bangs MJ, Chareonviriyaphap T (2014) Biting patterns and host preference of Anopheles epiroticus in Chang Island, Trat Province, Thailand. J Vector Ecol 39:361–371

    Google Scholar 

  • Rongnoparut P, Ugsang DM, Baimai V, Honda K, Sithiprasasna R (2005) Use of a remote sensing-based geographic information system in the characterizing spatial patterns for Anopheles minimus A and C breeding habitats in western Thailand. Southeast Asian J Trop Med Public Health 36(5):1145–1152

    PubMed  Google Scholar 

  • Rosenberg R, Andre RG, Somchit L (1990) Highly efficient dry season transmission of malaria in Thailand. Trans R Soc Trop Med Hyg 84(1):22–28

    CAS  PubMed  Google Scholar 

  • Roux E, Venancio AD, Girres JF, Romana CA (2011) Spatial patterns and eco-epidemiological systems – part II: characterising spatial patterns of the occurrence of the insect vectors of Chagas disease based on remote sensing and field data. Geospat Health 6(1):53–64

    PubMed  Google Scholar 

  • Rundel PW, Boonpragob K (1995) Dry forest ecosystems of Thailand. In: Bullock SH, Mooney HA, Medina E (eds) Seasonally dry tropical forests. Cambridge University Press, Cambridge, UK, pp 93–123

    Google Scholar 

  • Saeung A (2012) Anopheles (Diptera: Culicidae) species complex in Thailand: identification, distribution, bionomics and malaria-vector importance. Int J Parasitol Res 4:75–82

    Google Scholar 

  • Saeung A, Otsuka Y, Baimai V, Somboon P, Pitasawat B, Tuetun B et al (2007) Cytogenetic and molecular evidence for two species in the Anopheles barbirostris complex (Diptera: Culicidae) in Thailand. Parasitol Res 101(5):1337–1344. doi:10.1007/s00436-007-0645-1

    PubMed  Google Scholar 

  • Saeung A, Baimai V, Otsuka Y, Rattanarithikul R, Somboon P, Junkum A et al (2008) Molecular and cytogenetic evidence of three sibling species of the Anopheles barbirostris form a (Diptera:Culicidae) in Thailand. Parasitol Res 102(3):499–507. doi:10.1007/s00436-007-0788-0

    PubMed  Google Scholar 

  • Sahu SS, Parida SK, Sadanandane C, Gunasekaran K, Jambulingam P, Das PK (1990) Breeding habitats of malaria vectors: A. fluviatilis, A. annularis and A. culicifacies, in Koraput district, Orissa. Indian J Malariol 27(4):209–216

    CAS  PubMed  Google Scholar 

  • Sallum MA, Peyton EL, Wilkerson RC (2005) Six new species of the Anopheles leucosphyrus group, reinterpretation of An. elegans and vector implications. Med Vet Entomol 19(2):158–199. doi:10.1111/j.0269-283X.2005.00551.x

    CAS  PubMed  Google Scholar 

  • Satimai W, Sudathip P, Vijaykadga S, Khamsiriwatchara A, Sawang S, Potithavoranan T et al (2012) Artemisinin resistance containment project in Thailand. II: responses to mefloquine-artesunate combination therapy among falciparum malaria patients in provinces bordering Cambodia. Malar J 11:300. doi:10.1186/1475-2875-11-300

    CAS  PubMed Central  PubMed  Google Scholar 

  • Scanlon JE, Sandhinand U (1965) The distribution and biology of Anopheles balabacensis in Thailand (Diptera: Culicidae). J Med Entomol 2:61–69

    CAS  PubMed  Google Scholar 

  • Sharma VP, Kondrashin AV (1991) Forest malaria in Southeast Asia. In: Proceedings of an informal consultative meeting. World Health Organization/Medical Research Council, New Delhi

    Google Scholar 

  • Singhanetra-Renard A (1986) Population movement, socio-economic behavior and the transmission of malaria in northern Thailand. Southeast Asian J Trop Med Public Health 17(3):396–405

    CAS  PubMed  Google Scholar 

  • Singhanetra-Renard A (1993) Malaria and mobility in Thailand. Soc Sci Med 37(9):1147–1154

    CAS  PubMed  Google Scholar 

  • Singhasivanon P (1999) Mekong malaria. Malaria, multi-drug resistance and economic development in the greater Mekong subregion of Southeast Asia. Southeast Asian J Trop Med Public Health 30(Suppl 4):i–iv, 1–101

    PubMed  Google Scholar 

  • Sinka ME, Bangs MJ, Manguin S, Chareonviriyaphap T, Patil AP, Temperley WH et al (2011) The dominant Anopheles vectors of human malaria in the Asia-Pacific region: occurrence data, distribution maps and bionomic precis. Parasit Vectors 4:89. doi:10.1186/1756-3305-4-89

    PubMed Central  PubMed  Google Scholar 

  • Sodhi NS, Koh LP, Brook BW, Ng PKL (2004) Southeast Asian biodiversity: an impending disaster. Trends Ecol Evol 19(12):654–660. doi:10.1016/j.tree.2004.09.006

    PubMed  Google Scholar 

  • Somboon P, Prapanthadara LA, Suwonkerd W (2003) Insecticide susceptibility tests of Anopheles minimus s.l., Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus in northern Thailand. Southeast Asian J Trop Med Public Health 34(1):87–93

    CAS  PubMed  Google Scholar 

  • Somboon P, Thongwat D, Harbach RE (2011) Anopheles (Cellia) rampae n. sp., alias chromosomal form K of the Oriental Maculatus Group (Diptera: Culicidae) in Southeast Asia. Zootaxa 2810:47–55

    Google Scholar 

  • Stibig HJ, Belward AS, Roy PS, Rosalina-Wasrin U, Agrawal S, Joshi PK et al (2007) A land-cover map for South and Southeast Asia derived from SPOT-VEGETATION data. J Biogeogr 34(4):625–637. doi:10.1111/j.1365-2699.2006.01637.x

    Google Scholar 

  • Stone CM, Jackson BT, Foster WA (2012) Effects of plant-community composition on the vectorial capacity and fitness of the malaria mosquito Anopheles gambiae. Am J Trop Med Hyg 87(4):727–736. doi:10.4269/ajtmh. 2012.12-0123

    PubMed Central  PubMed  Google Scholar 

  • Stoops CA, Gionar YR, Shinta, Sismadi P, Rachmat A, Elyazar IF et al (2008) Remotely-sensed land use patterns and the presence of Anopheles larvae (Diptera: Culicidae) in Sukabumi, West Java, Indonesia. J Vector Ecol 33(1):30–39. doi:10.3376/1081-1710(2008)33[30:rlupat]2.0.co;2

    PubMed  Google Scholar 

  • Sudhakar S, Srinivas T, Palit A, Kar SK, Battacharya SK (2006) Mapping of risk prone areas of kala-azar (Visceral leishmaniasis) in parts of Bihar State, India: an RS and GIS approach. J Vector Borne Dis 43(3):115–122

    CAS  PubMed  Google Scholar 

  • Sungvornyothin S, Muenvorn V, Garros C, Manguin S, Prabaripai A, Bangs MJ et al (2006) Trophic behavior and biting activity of the two sibling species of the Anopheles minimus complex in western Thailand. J Vector Ecol 31(2):252–261

    PubMed  Google Scholar 

  • Suwonkerd W, Amg-Ung B, Rimwangtrakul K, Wongkattikul S, Kattiyamongkool B, Chitprarop U et al (1990) A field study on the response of Anopheles dirus to DDT and Fenitrothion sprayed to huts in Phetchabun province, Thailand. Trop Med 32(1):1–5

    Google Scholar 

  • Suwonkerd W, Overgaard HJ, Tsuda Y, Prajakwong S, Takagi M (2002) Malaria vector densities in transmission and non-transmission areas during 23 years and land use in Chiang Mai province, Northern Thailand. Basic Appl Ecol 3(3):197–207. doi:10.1078/1439-1791-00108

    Google Scholar 

  • Suwonkerd W, Tsuda Y, Overgaard HJ, Chawprom S, Tuno N, Prajakwong S et al (2004) Changes in malaria vector densities over a twenty-three year period in Mae Hong Son Province, northern Thailand. Southeast Asian J Trop Med Public Health 35(2):316–324

    PubMed  Google Scholar 

  • Suwonkerd W, Vryheid R, Suwannachote N (2010) Progress of partial integration of malaria control with other vector borne diseases control in northern Thailand. Southeast Asian J Trop Med Public Health 41(6):1297–1305

    PubMed  Google Scholar 

  • Tainchum K, Kongmee M, Manguin S, Bangs MJ, Chareonviriyaphap T (2015) Anopheles species diversity and distribution of the malaria vectors of Thailand. Trends Parasitol 31(3):109–119

    Google Scholar 

  • Thongdara R, Limsoontorn T, Imvitthaya C, Samarakoon L, Ranamukhaarachchi S, Almvik M et al (2009) Pesticides, agriculture and health in Thailand. Identification of potential implementation sites for integrated pest and vector management. Bioforsk report 4(103): 194 p. Ås. http://www.bioforsk.no/ikbViewer/page/tjenester/publikasjoner/publikasjon?p_document_id=52573

  • Trung HD, Van Bortel W, Sochantha T, Keokenchanh K, Quang NT, Cong LD et al (2004) Malaria transmission and major malaria vectors in different geographical areas of Southeast Asia. Trop Med Int Health 9(2):230–237

    CAS  PubMed  Google Scholar 

  • Trung HD, Van Bortel W, Sochantha T, Keokenchanh K, Briet OJT, Coosemans M (2005) Behavioural heterogeneity of Anopheles species in ecologically different localities in Southeast Asia: a challenge for vector control. Trop Med Int Health 10(3):251–262. doi:10.1111/j.1365-3156.2004.01378.x

    PubMed  Google Scholar 

  • Turner MG (1989) Landscape ecology. The effect of pattern on process. Annu Rev Ecol Syst 20:171–197. doi:10.1146/annurev.ecolsys.20.1.171

    Google Scholar 

  • Turner MG, Gardner RH (1990) Quantitative methods in landscape ecology: the analysis and interpretation of landscape heterogeneity, vol 82, Ecological studies series. Springer, Berlin

    Google Scholar 

  • Van Bortel W, Trung HD, Manh ND, Roelants P, Verle P, Coosemans M (1999) Identification of two species within the Anopheles minimus complex in northern Vietnam and their behavioural divergences. Trop Med Int Health 4(4):257–265

    PubMed  Google Scholar 

  • Van Bortel W, Trung HD, le Thuan K, Sochantha T, Socheat D, Sumrandee C et al (2008) The insecticide resistance status of malaria vectors in the Mekong region. Malar J 7:102. doi:10.1186/1475-2875-7-102

    PubMed Central  PubMed  Google Scholar 

  • Van den Berg H, Knols BGJ (2006) The farmer field school: a method for enhancing the role of rural communities in malaria control? Malar J 5. doi:10.1186/1475-2875-5-3

  • Van den Berg H, Senerath H, Amarasinghe L (2003) Farmer field schools in Sri Lanka: assessing the impact. Pestic News 61:14–16

    Google Scholar 

  • Vanwambeke SO, Somboon P, Harbach RE, Isenstadt M, Lambin EF, Walton C et al (2007a) Landscape and land cover factors influence the presence of Aedes and Anopheles larvae. J Med Entomol 44(1):133–144. doi:10.1603/0022-2585(2007)44[133:lalcfi]2.0.co;2

    PubMed  Google Scholar 

  • Vanwambeke SO, Lambin EF, Eichhorn MP, Flasse SP, Harbach RE, Oskam L et al (2007b) Impact of land-use change on dengue and malaria in northern Thailand. Ecohealth 4(1):37–51. doi:10.1007/s10393-007-0085-5

    Google Scholar 

  • Walter Reed Biosystematics Unit (2012) Systematic catalog of Culicidae. Walter Reed Biosystematics Unit, Walter Reed Army Institute of Research, Smithsonian Institution, Suitland. http://www.mosquitocatalog.org/default.aspx. Accessed May 2013

  • Walton C, Sharpe RG, Pritchard SJ, Thelwell NJ, Butlin RK (1999) Molecular identification of mosquito species. Biol J Linn Soc 68(1-2):241–256. doi:10.1111/j.1095-8312.1999.tb01168.x

    Google Scholar 

  • Wearing CH (1988) Evaluating the IPM implementation process. Annu Rev Entomol 33:17–38. doi:10.1146/annurev.ento.33.1.17

    Google Scholar 

  • WHO (1996) Resistance of vectors and reservoirs of disease to pesticides, vol 737, WHO technical report series. World Health Organization, Geneva, pp 1–87

    Google Scholar 

  • WHO (2004) Global strategic framework for integrated vector management. WHO/CDS/CPE/PVC/2004.10. World Health Organization, Geneva, 12 pp

    Google Scholar 

  • WHO (2006) Evaluation report of the integrated pest and vector management project in Sri Lanka. World Health Organization, Southeast Asia Regional Office, New Dehli. http://209.61.208.233/EN/Section23/Section1001/Section1110_12796.htm. Accessed May 2013

  • WHO (2010) Malaria Thailand profile. World Health Organization, Southeast Asia Regional Office, New Dehli. http://whothailand.healthrepository.org/bitstream/123456789/1443/6/Thailand%20malaria%20report.pdf. Accessed May 2013

  • WHO (2011) World Malaria report 2011. World Health Organization, Geneva. http://www.who.int/malaria/world_malaria_report_2011/9789241564403_eng.pdf. Accessed May 2013

  • WHO (2012a) Handbook for integrated vector management. WHO/HTM/NTD/VEM/2012.3. World Health Organization, Geneva, 12 pp

    Google Scholar 

  • WHO (2012b) Global plan for insecticide resistance management in malaria vectors (GPIRM). http://www.who.int/malaria/vector_control/ivm/gpirm/en/index.html. WHO/HTM/GMP/2012.5. World Health Organization, Geneva

  • WHO (2013) World malaria report 2013. World Health Organization, Geneva

    Google Scholar 

  • Yadouleton A, Martin T, Padonou G, Chandre F, Asidi A, Djogbenou L et al (2011) Cotton pest management practices and the selection of pyrethroid resistance in Anopheles gambiae population in Northern Benin. Parasit Vectors 4. doi:10.1186/1756-3305-4-60

  • Yasuoka J, Levins R (2007) Impact of deforestation and agricultural development on anopheline ecology and malaria epidemiology. Am J Trop Med Hyg 76(3):450–460

    PubMed  Google Scholar 

  • Yasuoka J, Levins R, Mangione TW, Spielman A (2006a) Community-based rice ecosystem management for suppressing vector anophelines in Sri Lanka. Trans R Soc Trop Med Hyg 100(11):995–1006. doi:10.1016/j.trstmh.2005.12.014

    PubMed  Google Scholar 

  • Yasuoka J, Mangione TW, Spielman A, Levins R (2006b) Impact of education on knowledge, agricultural practices, and community actions for mosquito control and mosquito-borne disease prevention in rice ecosystems in Sri Lanka. Am J Trop Med Hyg 74(6):1034–1042

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans J. Overgaard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Overgaard, H.J., Suwonkerd, W., Hii, J. (2015). The Malaria Landscape: Mosquitoes, Transmission, Landscape, Insecticide Resistance, and Integrated Control in Thailand. In: Morand, S., Dujardin, JP., Lefait-Robin, R., Apiwathnasorn, C. (eds) Socio-Ecological Dimensions of Infectious Diseases in Southeast Asia. Springer, Singapore. https://doi.org/10.1007/978-981-287-527-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-287-527-3_9

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-287-526-6

  • Online ISBN: 978-981-287-527-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics