Skip to main content

Adaptation of Mosquito Vectors to Salinity and Its Impact on Mosquito-Borne Disease Transmission in the South and Southeast Asian Tropics

  • Chapter
Socio-Ecological Dimensions of Infectious Diseases in Southeast Asia

Abstract

Mosquito vector-borne diseases are a significant health problem in South and Southeast Asia. Some mosquito vectors in the region are well known to lay eggs and undergo pre-imaginal development in brackish water. However, a number of other important vectors, e.g. Anopheles culicifacies (malaria) and Aedes aegypti and Aedes albopictus (dengue and chikungunya), have previously been widely held to do so exclusively in freshwater. But recent evidence shows that these species can also lay eggs and undergo pre-imaginal development in brackish water collections in coastal areas of the region. This property produces a reservoir of vectors that are not targeted in larval control programmes. It can contribute to disease transmission in a previously unrecognised manner that can be compounded by environmental changes caused by expanding populations in coastal zones, climate change and rising sea levels due to global warming. Increased disease transmission in coastal areas will also lead to higher disease incidence in inland areas. Many countries in South and Southeast Asia have long coastlines, a high proportion of coastal zone relative to total land area and a large proportion of the population living in coastal areas. Hence, the region is particularly vulnerable to disease transmission by brackish water vectors. Appropriate policies and strategies need to be developed in a local, national and international context to counter this threat to human health in South and Southeast Asia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barraud PJ (1934) Diptera Vol V Family Culicidae. Tribes Megarhinini and Culicini. In: Sewell RBS, Edwards PW (eds) The fauna of British India, including Ceylon and Burma. Taylor and Francis, London

    Google Scholar 

  • Bradley TJ (1987) Physiology of osmoregulation in mosquitoes. Annu Rev Entomol 32:439–462

    Article  CAS  PubMed  Google Scholar 

  • Cavrini F, Gaiban P, Pierro AM et al (2009) Chikungunya: an emerging and spreading arthropod-borne viral disease. J Infect Dev Ctries 3:744–752

    CAS  PubMed  Google Scholar 

  • Central Intelligence Agency (2012) The world factbook. Washington, DC, USA

    Google Scholar 

  • Chan KL, Ho BC, Chan YC (1971) Aedes aegypti (L.) and Aedes albopictus (Skuse) in Singapore City. Bull World Health Organ 4:629–633

    Google Scholar 

  • Chun L, Telisinghe PU, Hossain MM et al (2007) Vaccine development against dengue and shigellosis and implications for control of the two diseases in Brunei Darussalam. Brunei Darussalam J Health 2:60–71

    Google Scholar 

  • Dondorp AM, Yeung S, White L et al (2010) Artemisinin resistance: current status and scenarios for containment. Nat Rev Microbiol 8:272–280

    Article  CAS  PubMed  Google Scholar 

  • Edwards HA (1982) Free amino acids as regulators of osmotic pressure in aquatic insect larvae. J Exp Biol 101:153–160

    CAS  Google Scholar 

  • Erickson SM, Xi Z, Mayhew GF et al (2009) Mosquito infection responses to developing filarial worms. PLoS Negl Trop Dis 3:e529

    Article  PubMed Central  PubMed  Google Scholar 

  • Fillinger U, Lindsay SW (2011) Larval source management for malaria control in Africa: myths and reality. Malar J 10:353

    Article  PubMed Central  PubMed  Google Scholar 

  • Food and Agricultural Organisation (2007) Seawater intrusion in coastal aquifers – guidelines for study, monitoring and control. FAO, Rome

    Google Scholar 

  • Gunasekaran K, Jambulingam P, Srinivasan R et al (2005) Malaria receptivity in the tsunami-hit coastal villages of southern India. Lancet Infect Dis 5:531–532

    Article  CAS  PubMed  Google Scholar 

  • Halstead SB (2003) Neutralisation and antibody-dependent enhancement of dengue viruses. Adv Virus Res 60:421–467

    Article  CAS  PubMed  Google Scholar 

  • Idris FH, Usman A, Surendran SN et al (2013) Detection of Aedes albopictus pre-imaginal stages in brackish water habitats in Brunei Darussalam. J Vect Ecol 38:197–199

    Article  Google Scholar 

  • Intergovernmental Panel on Climate Change (2013) Working group I contribution to the IPCC Fifth Assessment Report Climate Change 2013: the physical science basis. Summary for policymakers. http://www.climatechange2013.org/images/uploads/WGIAR5-PM_Approved27Sep2013.pdf. Accessed 17 Oct 2013

  • Jude PJ, Dharshini S, Vinobaba M et al (2010) Anopheles culicifacies breeding in brackish waters in Sri Lanka and implications for malaria control. Malar J 9:106

    Article  PubMed Central  PubMed  Google Scholar 

  • Jude PJ, Tharmasegaram T, Sivasubramaniyam G et al (2012) Salinity-tolerant larvae of mosquito vectors in the tropical coast of Jaffna, Sri Lanka and the effect of salinity on the toxicity of Bacillus thuringiensis to Aedes aegypti larvae. Parasit Vectors 5:269

    Article  PubMed Central  PubMed  Google Scholar 

  • Kulatilaka TA, Jayakuru WS (1998) Control of dengue/dengue haemorrhagic fever in Sri Lanka. Dengue Bull 22:53–61

    Google Scholar 

  • La Ruche G, Souares Y, Armengaud A et al (2010) First two autochthonous dengue virus infections in metropolitan France. Euro Surveill 15:19676

    PubMed  Google Scholar 

  • McGranahan G, Balk D, Anderson B (2007) The rising tide: assessing the risks of climate change and human settlements in low elevation coastal zones. Environ Urban 19:17

    Article  Google Scholar 

  • Nicholls RJ, Wong PP, Burkett VR (2007) Coastal systems and low-lying areas. Climate change 2007: impacts, adaptation and vulnerability. In: Parry ML, Canziani OF, Palutikof JP et al (eds) Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 315–356

    Google Scholar 

  • Ooi EE, Goh KT, Gubler DJ (2006) Dengue prevention and 35 years of vector control in Singapore. Emerg Infect Dis 12:887–893

    Article  PubMed Central  PubMed  Google Scholar 

  • Rajasooriyar LD, Mathavan V, Dharmagunewardene HA et al (2002) Groundwater quality in the Valigamam region of the Jaffna Peninsula, Sri Lanka. In: Hiscock KM, Rivett MO, Davison RM (eds) Sustainable groundwater development. Geological Society, London, pp 181–197, Special publications 193

    Google Scholar 

  • Rajendram G, Antony NR (1991) Survey of peri-domestic mosquito species of Jaffna peninsula in Sri Lanka. Southeast Asian J Trop Med Public Health 22:637–642

    CAS  PubMed  Google Scholar 

  • Ramasamy R, Surendran SN (2011) Possible impact of rising sea levels on vector-borne infectious diseases. BMC Infect Dis 11:18. doi:10.1186/1471-2334-11-18

    Article  PubMed Central  PubMed  Google Scholar 

  • Ramasamy R, Surendran SN (2012) Global climate change and its potential impact on disease transmission by salinity-tolerant mosquito vectors in coastal zones. Front Physiol 3:198

    Article  PubMed Central  PubMed  Google Scholar 

  • Ramasamy R, Surendran SN (2013) Global environment changes and salinity adaptation in mosquito vectors. Lambert Academic Publishing, Saarbrucken

    Google Scholar 

  • Ramasamy MS, Sands M, Kay BH et al (1990) Anti-mosquito antibodies reduce the susceptibility of Aedes aegypti to arbovirus infection. Med Vet Entomol 4:49–55

    Article  CAS  PubMed  Google Scholar 

  • Ramasamy R, Surendran SN, Jude PJ et al (2011) Larval development of Aedes aegypti and Aedes albopictus in peri-urban brackish water and its implications for transmission of arboviral diseases. PLoS Negl Trop Dis 5:e1369

    Article  PubMed Central  PubMed  Google Scholar 

  • Ramasamy R, Jude PJ, Veluppillai T et al (2014) Biological differences between brackish and fresh water-derived Aedes aegypti from two locations in the Jaffna peninsula of Sri Lanka and the implications for arboviral disease transmission. PLoS One 9:e104977

    Article  PubMed Central  PubMed  Google Scholar 

  • Rezza G (2012) Aedes albopictus and the re-emergence of dengue. BMC Public Health 12:72

    Article  PubMed Central  PubMed  Google Scholar 

  • Rezza G, Nicoletti L, Angelini R et al (2007) Infection with chikungunya virus in Italy: an outbreak in a temperate region. Lancet 370:1840–1846

    Article  CAS  PubMed  Google Scholar 

  • Sanchez L, Vanlerberghe V, Alfonso L et al (2006) Aedes aegypti larval indices and risk of dengue epidemics. Emerg Infect Dis 12:800–806

    Article  PubMed Central  PubMed  Google Scholar 

  • Sinka ME, Bangs MJ, Manguin S et al (2011) The dominant Anopheles vectors of human malaria in the Asia-Pacific region: occurrence data, distribution maps and bionomic précis. Parasit Vectors 4:89

    Article  PubMed Central  PubMed  Google Scholar 

  • Smith KE, Van Ekeris LA, Okech BA et al (2008) Larval anopheline mosquito recta exhibit a dramatic change in localization patterns of ion transport proteins in response to shifting salinity: a comparison between anopheline and culicine larvae. J Exp Biol 211:3067–3076

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Surendran SN, Kannathasan S, Kajatheepan A et al (2007) Chikungunya type fever outbreak: some aspects related to this new epidemic in Jaffna district, northern Sri Lanka. Trop Med Health 35:249–252

    Article  Google Scholar 

  • Surendran SN, Singh OP, Jude PJ et al (2010) Genetic evidence for malaria vectors of the Anopheles sundaicus complex in Sri Lanka with morphological characteristics attributed to Anopheles subpictus species B. Malar J 9:343

    CAS  PubMed Central  PubMed  Google Scholar 

  • Surendran SN, Jude PJ, Ramasamy R (2011) Variations in salinity tolerance of malaria vectors of the Anopheles subpictus complex in Sri Lanka and the implications for malaria transmission. Parasit Vectors 4:117

    Article  PubMed Central  PubMed  Google Scholar 

  • Surendran SN, Jude PJ, Thabothiny V et al (2012) Pre-imaginal development of Aedes aegypti in brackish and fresh water urban domestic wells in Sri Lanka. J Vector Ecol 37:471–473

    Article  PubMed  Google Scholar 

  • United Nations Environment Programme (2007) Global programme of action for the protection of the marine environment from land-based activities: physical alteration and destruction of habitats. UNEP, Nairobi. http://gpa.unep.org/content.html?id=199&ln=6. Accessed 15 Jun 2010

  • Walter Reed Biosystematics Unit (2013) Keys to medically important mosquito species. Smithsonian Institution, Silver Spring, http://wrbu.org/command_aors_MQ.html. Accessed 26 Dec 2013

    Google Scholar 

  • Weaver SC, Reisen WK (2010) Present and future arboviral threats. Antiviral Res 85:328–345

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • World Health Organization (2009) Dengue guidelines for diagnosis, treatment, prevention and control. http://www.whqlibdoc.who.int/publications/2009/9789241547871_eng.pdf. Accessed 13 Jun 2013

  • World Health Organisation (2012) http://www.searo.who.int and http://www.wpro.who.int. Accessed 15 May 2012

  • World Health Organisation (2013a) Fact sheet No 100. Yellow fever. WHO, Geneva, http://www.who.int/mediacentre/factsheets/fs100/en/. Accessed 26 Dec 2013

  • World Health Organisation (2013b) World malaria report 2012. http://www.who.int/malaria/publications/world_malaria_report_2013/report/en/. Accessed 27 Feb 2014

  • World Health Organization (2013c) Fact sheet No. 117 – Dengue and severe dengue. http://www.who.int/mediacentre/factsheets/fs117/en/. Accessed 26 Jan 2014

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranjan Ramasamy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Ramasamy, R., Surendran, S.N., Jude, P.J., Dharshini, S., Vinobaba, M. (2015). Adaptation of Mosquito Vectors to Salinity and Its Impact on Mosquito-Borne Disease Transmission in the South and Southeast Asian Tropics. In: Morand, S., Dujardin, JP., Lefait-Robin, R., Apiwathnasorn, C. (eds) Socio-Ecological Dimensions of Infectious Diseases in Southeast Asia. Springer, Singapore. https://doi.org/10.1007/978-981-287-527-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-287-527-3_8

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-287-526-6

  • Online ISBN: 978-981-287-527-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics