Skip to main content

Learning Synergism in Nanotechnology and Chemical Engineering by Case Study

  • Chapter
  • First Online:
Nanotechnology for Chemical Engineers

Abstract

Chemical vapor deposition (CVD) is a versatile process applied to produce high-purity, high-performance solid materials by a chemical reaction of vapor-phase precursors (Vahlas et al. in Mater Sci Eng R: Rep 53(1):1–72, 2006).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    www.photon.t.u-tokyo.ac.ir.

References

  • Aghababazadeh, R., Mirhabibi, A. R., Ghanbari, H., Chizari, K., Brydson, R. M., & Brown, A. P. (2006). Synthesis of carbon nanotubes on alumina-based supports with different gas flow rates by CCVD method. Journal of Physics: Conference Series, 26(1), 135.

    Google Scholar 

  • Ajayan, P. M. (1999). Nanotubes from carbon. Chemical Reviews, 99(7), 1787–1800.

    Google Scholar 

  • Akhtar, M. K., Lipscomb, G. G., & Pratsinis, S. E. (1994). Monte Carlo simulation of particle coagulation and sintering. Aerosol Science and Technology, 21(1), 83–93.

    Google Scholar 

  • Allouche, H., & Monthioux, M. (2005). Chemical vapor deposition of pyrolytic carbon on carbon nanotubes. Part 2. Texture and structure. Carbon, 43(6), 1265–1278.

    Google Scholar 

  • Alavi, S., & Caussat, B. (2005). Experimental study on fluidization of micronic powders. Powder Technology, 157(1), 114–120.

    Google Scholar 

  • Alvarez, W. E., Kitiyanan, B., Borgna, A., & Resasco, D. E. (2001). Synergism of Co and Mo in the catalytic production of single-wall carbon nanotubes by decomposition of CO. Carbon, 39(4), 547–558.

    Google Scholar 

  • Andrews, R., Jacques, D., Qian, D., & Rantell, T. (2002). Multiwall carbon nanotubes: Synthesis and application. Accounts of Chemical Research, 35(12), 1008–1017.

    Google Scholar 

  • Arena, U., Mastellone, M. L., Camino, G., & Boccaleri, E. (2006). An innovative process for mass production of multi-wall carbon nanotubes by means of low-cost pyrolysis of polyolefins. Polymer Degradation and Stability, 91(4), 763–768.

    Google Scholar 

  • Aslam, Z., Li, X., Brydson, R., Rand, B., Falke, U., & Bleloch, A. (2006).Supported catalytic growth of SWCNTs using the CVD method. Journal of Physics: Conference Series, 26(1), 139–142.

    Google Scholar 

  • Avdeeva, L. B., Kochubey, D. I., & Shaikhutdinov, S. K. (1999). Cobalt catalysts of methane decomposition: Accumulation of the filamentous carbon. Applied Catalysis, A: General, 177(1), 43–51.

    Google Scholar 

  • Bachmatiuk, A., Borowiak-Palen, E., & Kalenczuk, R. J. (2008). Advances in engineering of diameter and distribution of the number of walls of carbon nanotubes in alcohol CVD. Nanotechnology, 19(36), 365605.

    Google Scholar 

  • Baker, R. T. K. (1989). Catalytic growth of carbon filaments. Carbon, 27(3), 315–323.

    Google Scholar 

  • Bhattacharya, S. K., & Tummala, R. R. (2001). Integral passives for next generation of electronic packaging: Application of epoxy/ceramic nanocomposites as integral capacitors. Microelectronics Journal, 32(1), 11–19.

    Google Scholar 

  • Blanchard, J., Oudghiri-Hassani, H., Abatzoglou, N., Jankhah, S., & Gitzhofer, F. (2008). Synthesis of nanocarbons via ethanol dry reforming over a carbon steel catalyst. Chemical Engineering Journal, 143(1), 186–194.

    Google Scholar 

  • Brukh, R., & Mitra, S. (2006). Mechanism of carbon nanotube growth by CVD. Chemical Physics Letters, 424(1), 126–132.

    Google Scholar 

  • Cao, G. (2004). Nanostructures and nanomaterials. Synthesis properties and applications. London: Imperial College Press.

    Google Scholar 

  • Cassell, A. M., Raymakers, J. A., Kong, J., & Dai, H. (1999). Large scale CVD synthesis of single-walled carbon nanotubes. The Journal of Physical Chemistry B, 103(31), 6484–6492.

    Google Scholar 

  • Caussat, B., & Vahlas, C. (2007). CVD and powders: A great potential to create new materials. Chemical Vapor Deposition, 13(9), 443–445.

    Google Scholar 

  • Ciambelli, P., Sannino, D., Sarno, M., Leone, C., & Lafont, U. (2007). Effects of alumina phases and process parameters on the multiwalled carbon nanotubes growth. Diamond and Related Materials, 16(4), 1144–1149.

    Google Scholar 

  • Ci, L., Xie, S., Tang, D., Yan, X., Li, Y., Liu, Z., & Wang, G. (2001). Controllable growth of single wall carbon nanotubes by pyrolizing acetylene on the floating iron catalysts. Chemical Physics Letters, 349(3), 191–195.

    Google Scholar 

  • Corrias, M., Caussat, B., Ayral, A., Durand, J., Kihn, Y., Kalck, P., & Serp, P. (2003). Carbon nanotubes produced by fluidized bed catalytic CVD: First approach of the process. Chemical Engineering Science, 58(19), 4475–4482.

    Google Scholar 

  • Corrias, M., Kihn, Y., Kalck, P., & Serp, P. (2005). CVD from ethylene on cobalt ferrite catalysts: The effect of the support. Carbon, 43(13), 2820–2823.

    Google Scholar 

  • Dai, H. (2001). Nanotube growth and characterization. In Carbon Nanotubes (pp. 29–53). Berlin: Springer.

    Google Scholar 

  • Dai, H., Rinzler, A. G., Nikolaev, P., Thess, A., Colbert, D. T., & Smalley, R. E. (1996). Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide. Chemical Physics Letters, 260(3), 471–475.

    Google Scholar 

  • Danafar, F., Fakhru’l-Razi, A., Salleh, M. A. M., & Biak, D. R. A. (2009). Fluidized bed catalytic chemical vapor deposition synthesis of carbon nanotubes—A review. Chemical Engineering Journal, 155(1), 37–48.

    Google Scholar 

  • Danafar, F., Fakhru’l-Razi, A., Salleh, M. A. M., & Biak, D. R. A. (2011). Influence of catalytic particle size on the performance of fluidized-bed chemical vapor deposition synthesis of carbon nanotubes. Chemical Engineering Research and Design, 89(2), 214–223.

    Google Scholar 

  • Davidson, J. F., & Harrison, D. (1963). Fluidised particles. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Dupuis, A. C. (2005). The catalyst in the CCVD of carbon nanotubes—A review. Progress in Materials Science, 50(8), 929–961.

    Google Scholar 

  • Elnashaie, S. S., Affane, C., & Uhlig, F. (2007). Numerical techniques for chemical and biological engineers using MATLAB®: A simple bifurcation approach. Berlin: Springer.

    Google Scholar 

  • Ergun, S. (1952). Fluid flow through packed columns. Chemical Engineering Progress, 48, 89–94.

    Google Scholar 

  • Ermakova, M. A., Ermakov, D. Y., Chuvilin, A. L., & Kuvshinov, G. G. (2001). Decomposition of methane over iron catalysts at the range of moderate temperatures: The influence of structure of the catalytic systems and the reaction conditions on the yield of carbon and morphology of carbon filaments. Journal of Catalysis, 201(2), 183–197.

    Google Scholar 

  • Fakhru’l‐Razi, A., Danafar, F., Dayang Radiah, A. B., & Mohd Salleh, M. A. (2009). An innovative procedure for large‐scale synthesis of carbon nanotubes by fluidized bed catalytic vapor deposition technique. Fullerenes, Nanotubes and Carbon Nanostructures, 17(6), 652–663.

    Google Scholar 

  • Fan, S., Chapline, M. G., Franklin, N. R., Tombler, T. W., Cassell, A. M., & Dai, H. (1999). Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science, 283(5401), 512–514.

    Google Scholar 

  • García-García, F. R., Pérez-Cabero, M., Nevskaia, D. M., Rodríguez-Ramos, I., & Guerrero-Ruiz, A. (2008). Improving the synthesis of high purity carbon nanotubes in a catalytic fluidized bed reactor and their comparative test for hydrogen adsorption capacity. Catalysis Today, 133, 815–821.

    Google Scholar 

  • Geldart, D. (1973). Types of gas fluidization. Powder Technology, 7(5), 285–292.

    Google Scholar 

  • Grace, J. R. (1986). Modelling and simulation of two-phase fluidized bed reactors. In Chemical reactor design and technology (pp. 245–289). Netherlands: Springer.

    Google Scholar 

  • Gupta, C. K., & Sathiyamoorthy, D. (1998). Fluid bed technology in materials processing. New York: CRC Press.

    Google Scholar 

  • Gutzow, I., Pascova, R., Karamanov, A., & Schmelzer, J. (1998). The kinetics of surface induced sinter crystallization and the formation of glass-ceramic materials. Journal of Materials Science, 33(21), 5265–5273.

    Google Scholar 

  • Haas, V., Birringer, R., Gleiter, H., & Pratsinis, S. E. (1997). Synthesis of nanostructured powders in an aerosol flow condenser. Journal of aerosol science, 28(8), 1443–1453.

    Google Scholar 

  • Habuka, H., Ohmori, H., & Ando, Y. (2010). Silicon carbide film deposition at low temperatures using monomethylsilane gas. Surface and Coatings Technology, 204(9), 1432–1437.

    Google Scholar 

  • Hagen, J. (2006). Industrial catalysis: A practical approach (2nd ed.). Germany: WILEY-VCH Verlag GmbH & Co.

    Google Scholar 

  • Hahn, H. (1997). Gas phase synthesis of nanocrystalline materials. Nanostructured Materials, 9(1), 3–12.

    Google Scholar 

  • Hale P. S., Maddox L. M., Shapter J. G., Voelcker N. H., Ford M. J. & Waclawik E. R. (2005).Growth kinetics and modeling of ZnO nanoparticles. Journal of Chemical Education, 82(5).

    Google Scholar 

  • Hao, Y., Qunfeng, Z., Fei, W., Weizhong, Q., & Guohua, L. (2003). Agglomerated CNTs synthesized in a fluidized bed reactor: Agglomerate structure and formation mechanism. Carbon, 41(14), 2855–2863.

    Google Scholar 

  • Height, M. J., Howard, J. B., Tester, J. W., & Vander Sande, J. B. (2005). Carbon nanotube formation and growth via particle-particle interaction. The Journal of Physical Chemistry B, 109(25), 12337–12346.

    Google Scholar 

  • Heine, M. C., & Pratsinis, S. E. (2007). Agglomerate TiO2 aerosol dynamics at high concentrations. Particle & Particle Systems Characterization, 24(1), 56–65.

    Google Scholar 

  • Hernadi, K. (2002). Catalytic synthesis of multiwall carbon nanotubes from methylacetylene. Chemical Physics Letters, 363(1), 169–174.

    Google Scholar 

  • Herrera, J. E., Balzano, L., Borgna, A., Alvarez, W. E., & Resasco, D. E. (2001). Relationship between the structure/composition of Co–Mo catalysts and their ability to produce single-walled carbon nanotubes by CO disproportionation. Journal of Catalysis, 204(1), 129–145.

    Google Scholar 

  • Hess, D. W., & Graves, D. B. (1989). Plasma-enhanced etching and deposition. Microelectronics processing–a chemical engineering aspects. American Chemical Society, 382.

    Google Scholar 

  • Jones, A. C., & Hitchman, M. L. (Eds.). (2009). Chemical vapour deposition: Precursors, processes and applications. Royal Society of Chemistry.

    Google Scholar 

  • Jung, J., & Gidaspow, D. (2002). Fluidization of nano-size particles. Journal of Nanoparticle Research, 4(6), 483–497.

    Google Scholar 

  • Kathyayini, H., Willems, I., Fonseca, A., Nagy, J. B., & Nagaraju, N. (2006). Catalytic materials based on aluminium hydroxide, for the large scale production of bundles of multi-walled (MWNT) carbon nanotubes. Catalysis Communications, 7(3), 140–147.

    Google Scholar 

  • Kim, J., & Grate, J. W. (2003). Single-enzyme nanoparticles armoured by a nanometer-scale organic/inorganic network. Nano Letters, 3, 1219–1222.

    Google Scholar 

  • Kim, K. E., Kim, K. J., Jung, W. S., Bae, S. Y., Park, J., Choi, J., & Choo, J. (2005). Investigation on the temperature-dependent growth rate of carbon nanotubes using chemical vapor deposition of ferrocene and acetylene. Chemical Physics Letters, 401(4), 459–464.

    Google Scholar 

  • Kitiyanan, B., Alvarez, W. E., Harwell, J. H., & Resasco, D. E. (2000). Controlled production of single-wall carbon nanotubes by catalytic decomposition of CO on bimetallic Co–Mo catalysts. Chemical Physics Letters, 317(3), 497–503.

    Google Scholar 

  • Klinke, C., Bonard, J. M., & Kern, K. (2001). Comparative study of the catalytic growth of patterned carbon nanotube films. Surface Science, 492(1), 195–201.

    Google Scholar 

  • Koch, W., & Friedlander, S. K. (1990). The effect of particle coalescence on the surface area of a coagulating aerosol. Journal of Colloid and Interface Science, 140(2), 419–427.

    Google Scholar 

  • Koetz, J., & Kosmella, S. (2007). Polyelectrolytes and nanoparticles. Berlin: Springer.

    Google Scholar 

  • Kong, J., Cassell, A. M., & Dai, H. (1998). Chemical vapor deposition of methane for single-walled carbon nanotubes. Chemical Physics Letters, 292(4), 567–574.

    Google Scholar 

  • Kouravelou, K. B., & Sotirchos, S. V. (2005). Dynamic study of carbon nanotubes production by chemical vapor deposition of alcohol. Advanced Material Science, 10, 243–248.

    Google Scholar 

  • Kruis, F. E., Fissan, H., & Peled, A. (1998). Synthesis of nanoparticles in the gas phase for electronic, optical and magnetic applications—A review. Journal of Aerosol Science, 29(5), 511–535.

    Google Scholar 

  • Kruis, F. E., Kusters, K. A., Pratsinis, S. E., & Scarlett, B. (1993). A simple model for the evolution of the characteristics of aggregate particles undergoing coagulation and sintering. Aerosol Science and Technology, 19(4), 514–526.

    Google Scholar 

  • Kukovecz, A., Konya, Z., Nagaraju, N., Willems, I., Tamasi, A., Fonseca, A., & Kiricsi, I. (2000). Catalytic synthesis of carbon nanotubes over Co, Fe and Ni containing conventional and sol–gel silica–aluminas. Physical Chemistry Chemical Physics, 2(13), 3071–3076.

    Google Scholar 

  • Kukovecz, Á., Smajda, R., Kónya, Z., & Kiricsi, I. (2007). Controlling the pore diameter distribution of multi-wall carbon nanotube buckypapers. Carbon, 45(8), 1696–1698.

    Google Scholar 

  • Kukovitsky, E. F., L’vov, S. G., Sainov, N. A., Shustov, V. A., & Chernozatonskii, L. A. (2002). Correlation between metal catalyst particle size and carbon nanotube growth. Chemical Physics Letters, 355(5), 497–503.

    Google Scholar 

  • Kuni, F. M., Shchekin, A. K., & Grinin, A. P. (2001). Theory of heterogeneous nucleation for vapor undergoing a gradual metastable state formation. Physics-Uspekhi, 44(4), 331–370.

    Google Scholar 

  • Kunii, D., & Levenspiel, O. (1991). Fluidization engineering. Boston: Butterworth.

    Google Scholar 

  • Kwok, C., Reizman, B. J., Agnew, D. E., Sandhu, G. S., Weistroffer, J., Strano, M. S., & Seebauer, E. G. (2010). Temperature and time dependence study of single-walled carbon nanotube growth by catalytic chemical vapor deposition. Carbon, 48(4), 1279–1288.

    Google Scholar 

  • Kwon, S. G., & Hyeon, T. (2011). Formation mechanisms of uniform nanocrystals via hot-injection and heat-up methods. Small, 7(19), 2685–2702.

    Google Scholar 

  • Lamouroux, E., Serp, P., & Kalck, P. (2007). Catalytic routes towards single wall carbon nanotubes. Catalysis Reviews, 49(3), 341–405.

    Google Scholar 

  • Lee, T. Y., Han, J. H., Choi, S. H., Yoo, J. B., Park, C. Y., Jung, T., & Kim, J. M. (2003). Comparison of source gases and catalyst metals for growth of carbon nanotube. Surface & Coatings Technology, 169, 348–352.

    Google Scholar 

  • Leskelä, M., & Ritala, M. (2002). Atomic layer deposition (ALD): From precursors to thin film structures. Thin Solid Films, 409(1), 138–146.

    Google Scholar 

  • Li, Q., Yan, H., Zhang, J., & Liu, Z. (2004a).Effect of hydrocarbons precursors on the formation of carbon nanotubes in chemical vapor deposition. Carbon, 42(4), 829–835.

    Google Scholar 

  • Li, Y. L., Kinloch, I. A., Shaffer, M. S., Geng, J., Johnson, B., & Windle, A. H. (2004b). Synthesis of single-walled carbon nanotubes by a fluidized-bed method. Chemical physics letters, 384(1), 98–102.

    Google Scholar 

  • Liao, X. Z., Serquis, A., Jia, Q. X., Peterson, D. E., Zhu, Y. T., & Xu, H. F. (2003). Effect of catalyst composition on carbon nanotube growth. Applied Physics Letters, 82(16), 2694–2696.

    Google Scholar 

  • Little, R. B. (2003). Mechanistic aspects of carbon nanotube nucleation and growth. Journal of Cluster Science, 14(2), 135–185.

    Google Scholar 

  • Liu, Q., & Fang, Y. (2006). New technique of synthesizing single-walled carbon nanotubes from ethanol using fluidized-bed over Fe–Mo/MgO catalyst. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 64(2), 296–300.

    Google Scholar 

  • Liu, Q., Ouyang, Y., Zhang, L., Xu, Y., & Fang, Y. (2009). Effects of argon flow rate and reaction temperature on synthesizing single-walled carbon nanotubes from ethanol. Physica E: Low-dimensional Systems and Nanostructures, 41(7), 1204–1209.

    Google Scholar 

  • Liu, X., Sun, H., Chen, Y., Lau, R., & Yang, Y. (2008). Preparation of large particle MCM-41 and investigation on its fluidization behavior and application in single-walled carbon nanotube production in a fluidized-bed reactor. Chemical Engineering Journal, 142(3), 331–336.

    Google Scholar 

  • Lorke, A., Winterer, M., Schmechel, R., & Schulz, C. (2012). Nanoparticles from the gasphase: Formation, structure, properties. Properties: Springer.

    Google Scholar 

  • Louis, B., Gulino, G., Vieira, R., Amadou, J., Dintzer, T., Galvagno, S., & Pham-Huu, C. (2005). High yield synthesis of multi-walled carbon nanotubes by catalytic decomposition of ethane over iron supported on alumina catalyst. Catalysis Today, 102, 23–28.

    Google Scholar 

  • Lu, W. Z., Teng, L. H., & Xiao, W. D. (2004). Simulation and experiment study of dimethyl ether synthesis from syngas in a fluidized-bed reactor. Chemical Engineering Science, 59(22), 5455–5464.

    Google Scholar 

  • Luo, G., Li, Z., Wei, F., Xiang, L., Deng, X., & Jin, Y. (2002). Catalysts effect on morphology of carbon nanotubes prepared by catalytic chemical vapor deposition in a nano-agglomerate bed. Physica B: Condensed Matter, 323(1), 314–317.

    Google Scholar 

  • MacKenzie, K. J., Dunens, O. M., & Harris, A. T. (2010). An updated review of synthesis parameters and growth mechanisms for carbon nanotubes in fluidized beds. Industrial and Engineering Chemistry Research, 49(11), 5323–5338.

    Google Scholar 

  • Mädler, L., & Friedlander, S. K. (2007). Transport of nanoparticles in gases: Overview and recent advances. Aerosol and Air Quality Research, 7, 304–342.

    Google Scholar 

  • Malgas, G. F., Arendse, C. J., Cele, N. P., & Cummings, F. R. (2008). Effect of mixture ratios and nitrogen carrier gas flow rates on the morphology of carbon nanotube structures grown by CVD. Journal of Materials Science, 43(3), 1020–1025.

    Google Scholar 

  • MARLAP (Multi-Agency Radiological Laboratory Analytical Protocols Manual). (2004). U.S. Nuclear Regulatory Commission, Washington, D.C.

    Google Scholar 

  • Maruyama, S., Kojima, R., Miyauchi, Y., Chiashi, S., & Kohno, M. (2002). Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol. Chemical Physics Letters, 360(3), 229–234.

    Google Scholar 

  • McCaulley, J. A., McCrary, V. R., & Donnelly, V. M. (1989). Laser-induced decomposition of triethylgallium and trimethylgallium adsorbed on gallium arsenide (100). The Journal of Physical Chemistry, 93(3), 1148–1158.

    Google Scholar 

  • Melechko, A. V., Merkulov, V. I., McKnight, T. E., Guillorn, M. A., Klein, K. L., Lowndes, D. H., & Simpson, M. L. (2005). Vertically aligned carbon nanofibers and related structures: Controlled synthesis and directed assembly. Journal of Applied Physics, 97(4), 041301.

    Google Scholar 

  • Mi, W., Lin, J. Y., Mao, Q., Li, Y., & Zhang, B. (2005). A study on the effects of carrier gases on the structure and morphology of carbon nanotubes prepared by pyrolysis of ferrocene and C~2H~2 Mixture. Journal of Natural Gas Chemistry, 14(3), 151–155.

    Google Scholar 

  • Mizuno, K., Hata, K., Saito, T., Ohshima, S., Yumura, M., & Iijima, S. (2005). Selective matching of catalyst element and carbon source in single-walled carbon nanotube synthesis on silicon substrates. The Journal of Physical Chemistry B, 109(7), 2632–2637.

    Google Scholar 

  • Moisala, A., Nasibulin, A. G., & Kauppinen, E. I. (2003). The role of metal nanoparticles in the catalytic production of single-walled carbon nanotubes-a review. Journal of Physics: Condensed Matter, 15(42), S3011.

    Google Scholar 

  • Mora, E., Tokune, T., & Harutyunyan, A. R. (2007). Continuous production of single-walled carbon nanotubes using a supported floating catalyst. Carbon, 45(5), 971–977.

    Google Scholar 

  • Morançais, A., Caussat, B., Kihn, Y., Kalck, P., Plee, D., Gaillard, P., et al. (2007).A parametric study of the large scale production of multi-walled carbon nanotubes by fluidized bed catalytic chemical vapor deposition. Carbon, 45(3), 624–635.

    Google Scholar 

  • Mori, S., & Wen, C. Y. (1975). Estimation of bubble diameter in gaseous fluidized beds. AIChE Journal, 21(1), 109–115.

    Google Scholar 

  • Muataz, A. A., Ahmadun, F., Guan, C., Mahdi, E., & Rinaldi, A. (2006). Effect of reaction temperature on the production of carbon nanotubes. NANO, 1(03), 251–257.

    Google Scholar 

  • Nagaraju, N., Fonseca, A., Konya, Z., & Nagy, J. B. (2002a). Alumina and silica supported metal catalysts for the production of carbon nanotubes. Journal of Molecular Catalysis A: Chemical, 181(1), 57–62.

    Google Scholar 

  • Nagaraju, N., Fonseca, A., Konya, Z., & Nagy, J. B. (2002b). Alumina and silica supported metal catalysts for the production of carbon nanotubes. Journal of Molecular Catalysis A: Chemical, 181(1), 57–62.

    Google Scholar 

  • Nakaso, K., Okuyama, K., Shimada, M., & Pratsinis, S. E. (2003). Effect of reaction temperature on CVD-made TiO2 primary particle diameter. Chemical Engineering Science, 58(15), 3327–3335.

    Google Scholar 

  • Nakaso, K., Shimada, M., Okuyama, K., & Deppert, K. (2002). Evaluation of the change in the morphology of gold nanoparticles during sintering. Journal of Aerosol Science, 33(7), 1061–1074.

    Google Scholar 

  • Nourbakhsh, A., Ganjipour, B., Zahedifar, M., & Arzi, E. (2007). Morphology optimization of CCVD-synthesized multiwall carbon nanotubes, using statistical design of experiments. Nanotechnology, 18(11), 115715.

    Google Scholar 

  • Öncel, Ç., & Yürüm, Y. (2006). Carbon nanotube synthesis via the catalytic CVD method: A review on the effect of reaction parameters. Fullerenes, Nanotubes, and Carbon Nonstructures, 14(1), 17–37.

    Google Scholar 

  • Ortega-Cervantez, G., Rueda-Morales, G., & Ortiz-Lopez, J. (2005). Catalytic CVD production of carbon nanotubes using ethanol. Microelectronics Journal, 36(3), 495–498.

    Google Scholar 

  • Ouyang, Y., Chen, L., Liu, Q. X., & Fang, Y. (2008). A temperature window for the synthesis of single-walled carbon nanotubes by catalytic chemical vapor deposition of CH4 over Mo-Fe/MgO catalyst. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 71(2), 317–320.

    Google Scholar 

  • Panda, S., & Pratsinis, S. E. (1995). Modeling the synthesis of aluminum particles by evaporation-condensation in an aerosol flow reactor. Nanostructured Materials, 5(7), 755–767.

    Google Scholar 

  • Park, J. H., & Sudarshan, T. S. (Eds.). (2001). Chemical vapor deposition (Vol. 2). ASM International.

    Google Scholar 

  • Peigney, A., Coquay, P., Flahaut, E., Vandenberghe, R. E., De Grave, E., & Laurent, C. (2001). A study of the formation of single-and double-walled carbon nanotubes by a CVD method. The Journal of Physical Chemistry B, 105(40), 9699–9710.

    Google Scholar 

  • Pérez-Cabero, M., Monzón, A., Rodrıguez-Ramos, I., & Guerrero-Ruı́z, A. (2004). Syntheses of CNTs over several iron-supported catalysts: Influence of the metallic precursors. Catalysis Today, 93, 681–687.

    Google Scholar 

  • Philippe, R., Morançais, A., Corrias, M., Caussat, B., Kihn, Y., Kalck, P., & Serp, P. (2007). Catalytic production of carbon nanotubes by fluidized-bed CVD. Chemical Vapor Deposition, 13(9), 447–457.

    Google Scholar 

  • Piedigrosso, P., Konya, Z., Colomer, J. F., Fonseca, A., Van Tendeloo, G., & Nagy, J. B. (2000). Production of differently shaped multi-wall carbon nanotubes using various cobalt supported catalysts. Physical Chemistry Chemical Physics, 2(1), 163–170.

    Google Scholar 

  • Pierson, H. O. (1999). Handbook of chemical vapor deposition: Principles, technology and applications. London: William Andrew.

    Google Scholar 

  • Pratsinis, S. E., & Spicer, P. T. (1998). Competition between gas phase and surface oxidation of TiCl4 during synthesis of TiO2 particles. Chemical Engineering Science, 53(10), 1861–1868.

    Google Scholar 

  • Qian, W., Liu, T., Wei, F., Wang, Z., & Li, Y. (2004). Enhanced production of carbon nanotubes: Combination of catalyst reduction and methane decomposition. Applied Catalysis, A: General, 258(1), 121–124.

    Google Scholar 

  • Qian, W., Yu, H., Wei, F., Zhang, Q., & Wang, Z. (2002). Synthesis of carbon nanotubes from liquefied petroleum gas containing sulfur. Carbon, 40(15), 2968–2970.

    Google Scholar 

  • Qiu, J., An, Y., Zhao, Z., Li, Y., & Zhou, Y. (2004). Catalytic synthesis of single-walled carbon nanotubes from coalgas by chemical vapor deposition method. Fuel Processing Technology, 85(8), 913–920.

    Google Scholar 

  • Qiu, J., Li, Q., Wang, Z., Sun, Y., & Zhang, H. (2006). CVD synthesis of coal-gas-derived carbon nanotubes and nanocapsules containing magnetic iron carbide and oxide. Carbon, 44(12), 2565–2568.

    Google Scholar 

  • Quingwen, L., Hao, Y., Jin, Z. & Zhongfan, L. (2004). Effect of hydrocarbons precursors on the formation of carbon nanotubes in chemical vapor deposition. Carbon, 42, 829–835

    Google Scholar 

  • Rao, C. N. R., Müller, A., & Cheetham, A. K. (Eds.). (2007). Nanomaterials chemistry: Recent developments and new directions. New York: Wiley.

    Google Scholar 

  • Reshetenko, T. V., Avdeeva, L. B., Khassin, A. A., Kustova, G. N., Ushakov, V. A., Moroz, E. M., et al. (2004). Coprecipitated iron-containing catalysts (Fe-Al2O3, Fe-Co-Al2O3, Fe-Ni-Al2O3) for methane decomposition at moderate temperatures I. Genesis of calcined and reduced catalysts. Applied Catalysis A: General, 268(1–2), 127–138.

    Google Scholar 

  • Sander, M., West, R. H., Celnik, M. S., & Kraft, M. (2009). A detailed model for the sintering of polydispersed nanoparticle agglomerates. Aerosol Science and Technology, 43(10), 978–989.

    Google Scholar 

  • Saxena, S. C., & Vadivel, R. (1988). Heat transfer from a tube bundle in a bubble column. International Communications in Heat and Mass Transfer, 15(5), 657–667.

    Google Scholar 

  • Saxena, S. C., Vadivel, R., & Saxena, A. C. (1989). Hydrodynamic and heat transfer characteristics of bubble columns involving fine powders. Powder Technology, 59(1), 25–35.

    Google Scholar 

  • Sear, R. P. (2007). Nucleation: Theory and applications to protein solutions and colloidal suspensions. Journal of Physics: Condensed Matter, 19(3), 033101.

    Google Scholar 

  • See, C. H., & Harris, A. T. (2008). CaCo3 supported Co-Fe catalysts for carbon nanotube synthesis in fluidized bed reactors. AIChE Journal, 54, 657–664.

    Google Scholar 

  • Serquis, A., Liao, X. Z., Huang, J. Y., Jia, Q. X., Peterson, D. E., & Zhu, Y. T. (2003). Co–Mo catalyzed growth of multi-wall carbon nanotubes from CO decomposition. Carbon, 41(13), 2635–2641.

    Google Scholar 

  • Sinnott, S. B., Andrews, R., Qian, D., Rao, A. M., Mao, Z., Dickey, E. C., & Derbyshire, F. (1999). Model of carbon nanotube growth through chemical vapor deposition. Chemical Physics Letters, 315(1), 25–30.

    Google Scholar 

  • Smajda, R., Kukovecz, Á., Kónya, Z., & Kiricsi, I. (2007). Structure and gas permeability of multi-wall carbon nanotube buckypapers. Carbon, 45(6), 1176–1184.

    Google Scholar 

  • Smith, D. K., Lee, D. C., & Korgel, B. A. (2006). High yield multiwall carbon nanotube synthesis in supercritical fluids. Chemistry of Materials, 18(14), 3356–3364.

    Google Scholar 

  • Son, S., Lee, D. H., Kim, S. D., & Sung, S. W. (2007). Effect of inert particles on the synthesis of carbon nanotubes in a gas-solid fluidized bed reactor. Journal of Industrial and Engineering Chemistry, 13(2), 257–264.

    Google Scholar 

  • Son, S. Y., Lee, Y., Won, S., Lee, D. H., Kim, S. D., & Sung, S. W. (2008). High-quality multiwalled carbon nanotubes from catalytic decomposition of carboneous materials in gas-solid fluidized beds. Industrial and Engineering Chemistry Research, 47(7), 2166–2175.

    Google Scholar 

  • Su, M., Zheng, B., & Liu, J. (2000). A scalable CVD method for the synthesis of single-walled carbon nanotubes with high catalyst productivity. Chemical Physics Letters, 322(5), 321–326.

    Google Scholar 

  • Swihart, M. T. (2003). Vapor-phase synthesis of nanoparticles. Current Opinion in Colloid & Interface Science, 8(1), 127–133.

    Google Scholar 

  • Teo, K. B., Singh, C., Chhowalla, M., & Milne, W. I. (2003).Catalytic synthesis of carbon nanotubes and nanofibers. Encyclopedia of Nanoscience and Nanotechnology, 10(1).

    Google Scholar 

  • Thanh, N. T., Maclean, N., & Mahiddine, S. (2014). Mechanisms of nucleation and growth of nanoparticles in solution. Chemical Reviews, 114(15), 7610–7630.

    Google Scholar 

  • Tran, K. Y., Heinrichs, B., Colomer, J. F., Pirard, J. P., & Lambert, S. (2007). Carbon nanotubes synthesis by the ethylene chemical catalytic vapor deposition (CCVD) process on Fe Co, and Fe–Co/Al2O3 sol–gel catalysts. Applied Catalysis, A: General, 318, 63–69.

    Google Scholar 

  • Tsantilis, S., & Pratsinis, S. E. (2004). Narrowing the size distribution of aerosol-made titania by surface growth and coagulation. Journal of aerosol science, 35(3), 405–420.

    Google Scholar 

  • Tsantilis, S., Pratsinis, S. E., & Haas, V. (1999). Simulation of synthesis of palladium nanoparticles in a jet aerosol flow condenser. Journal of Aerosol Science, 30(6), 785–803.

    Google Scholar 

  • Vahlas, C., Caussat, B., Serp, P., & Angelopoulos, G. N. (2006). Principles and applications of CVD powder technology. Materials Science and Engineering: R: Reports, 53(1), 1–72.

    Google Scholar 

  • Valverde, J. M., & Castellanos, A. (2008). Fluidization of nanoparticles: A simple equation for estimating the size of agglomerates. Chemical Engineering Journal, 140(1), 296–304.

    Google Scholar 

  • Van Steen, E., & Prinsloo, F. F. (2002). Comparison of preparation methods for carbon nanotubes supported iron Fischer-Tropsch catalysts. Catalysis Today, 71(3), 327–334.

    Google Scholar 

  • Vander Wal, R. L., Ticich, T. M., & Curtis, V. E. (2001). Substrate–support interactions in metal-catalyzed carbon nanofiber growth. Carbon, 39(15), 2277–2289.

    Google Scholar 

  • Vekilov, P. G. (2010). Nucleation. Crystal Growth & Design, 10(12), 5007–5019.

    Google Scholar 

  • Venegoni, D., Serp, P., Feurer, R., Kihn, Y., Vahlas, C., & Kalck, P. (2002). Parametric study for the growth of carbon nanotubes by catalytic chemical vapor deposition in a fluidized bed reactor. Carbon, 40(10), 1799–1807.

    Google Scholar 

  • Vinciguerra, V., Buonocore, F., Panzera, G., & Occhipinti, L. (2003). Growth mechanisms in chemical vapour deposited carbon nanotubes. Nanotechnology, 14(6), 655–660.

    Google Scholar 

  • Voorhees, P. W. (1985). The theory of Ostwald ripening. Journal of Statistical Physics, 38(1–2), 231–252.

    Google Scholar 

  • Wagner, R. S., & Ellis, W. C. (1964). Vapor-liquid-solid mechanism of single crystal growth. Applied Physics Letters, 4(5), 89–90.

    Google Scholar 

  • Walas, S. M. (1990).Chemical process equipment selection and design.(2nd Ed.).New York: Butterworth-Heinemann Reed Publishing.

    Google Scholar 

  • Wang, Y., Wei, F., Luo, G., Yu, H., & Gu, G. (2002). The large-scale production of carbon nanotubes in a nano-agglomerate fluidized-bed reactor. Chemical Physics Letters, 364(5), 568–572.

    Google Scholar 

  • Wei, Y. Y., Eres, G., Merkulov, V. I., & Lowndes, D. H. (2001). Effect of catalyst film thickness on carbon nanotube growth by selective area chemical vapor deposition. Applied Physics Letters, 78(10), 1394–1396.

    Google Scholar 

  • Weis, F., Schneider, R., Seipenbusch, M., & Kasper, G. (2013). Synthesis of Bi2O3/SiO2 core–shell nanoparticles by an atmospheric CVS/CVD process and their modification by hydrogen or electron-beam induced reduction. Surface and Coatings Technology, 230, 93–100.

    Google Scholar 

  • Wen, C. Y., & Yu, Y. H. (1966). A generalized method for predicting the minimum fluidization velocity. AIChE Journal, 12(3), 610–612.

    Google Scholar 

  • Wen, T., Brush, L. N., & Krishnan, K. M. (2014). A generalized diffusion model for growth of nanoparticles synthesized by colloidal methods. Journal of Colloid and Interface Science, 419, 79–85.

    Google Scholar 

  • Xia, W., Chen, X., Kundu, S., Wang, X., Grundmeier, G., Wang, Y., & Muhler, M. (2007). Chemical vapor synthesis of secondary carbon nanotubes catalyzed by iron nanoparticles electrodeposited on primary carbon nanotubes. Surface & Coatings Technology, 201(22), 9232–9237.

    Google Scholar 

  • Xiong, G. Y., Suda, Y., Wang, D. Z., Huang, J. Y., & Ren, Z. F. (2005). Effect of temperature, pressure, and gas ratio of methane to hydrogen on the synthesis of double-walled carbon nanotubes by chemical vapour deposition. Nanotechnology, 16(4), 532–535.

    Google Scholar 

  • Xu, C., & Zhu, J. (2004). One-step preparation of highly dispersed metal-supported catalysts by fluidized-bed MOCVD for carbon nanotube synthesis. Nanotechnology, 15(11), 1671–1681.

    Google Scholar 

  • Yamada, T., Namai, T., Hata, K., Futaba, D. N., Mizuno, K., Fan, J., & Iijima, S. (2006). Size-selective growth of double-walled carbon nanotube forests from engineered iron catalysts. Nature Nanotechnology, 1(2), 131–136.

    Google Scholar 

  • Yao, Y., Falk, L. K. L., Morjan, R. E., Nerushev, O. A., & Campbell, E. E. B. (2004). Synthesis of carbon nanotube films by thermal CVD in presence of supported catalyst particle. Part II: The nanotube film. Journal of Materials Science: Materials in Electronics, 15(9), 583–594.

    Google Scholar 

  • Yen, Y. W., Huang, M. D., & Lin, F. J. (2008). Synthesize carbon nanotubes by a novel method using chemical vapor deposition-fluidized bed reactor from solid-stated polymers. Diamond and Related Materials, 17(4), 567–570.

    Google Scholar 

  • Yu, G., Gong, J., Wang, S., Zhu, D., He, S., & Zhu, Z. (2006). Etching effects of ethanol on multi-walled carbon nanotubes. Carbon, 44(7), 1218–1224.

    Google Scholar 

  • Yudasaka, M., Kikuchi, R., Ohki, Y., Ota, E., & Yoshimura, S. (1997). Behavior of Ni in carbon nanotube nucleation. Applied Physics Letters, 70(14), 1817–1818.

    Google Scholar 

  • Zhao, J., Martinez-Limia, A., & Balbuena, P. B. (2005). Understanding catalysed growth of single-wall carbon nanotubes. Nanotechnology, 16(7), S575–S581.

    Google Scholar 

  • Zheng, L., Liao, X., & Zhu, Y. T. (2006). Parametric study of carbon nanotube growth via cobalt-catalyzed ethanol decomposition. Materials Letters, 60(16), 1968–1972.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Said Salaheldeen Elnashaie .

Exercises

Exercises

  1. 1.

    A researcher aims to produce a nanoparticels of ZnO through CVD process. What are parameters need to be well considered?

  2. 2.

    Calculate Gibbs free-energy change for carbon nanotube deposition in a CVD reaction, where ethylene is the carbon source.

  3. 3.

    A tube flow reactor is used for CVD synthesis of CNT. The gas flow in the reactor is considered weakly compressible and as a steady state two-dimensional axis symmetric flow. Derive the mathematical correlations for transport phenomena in this reactor. (The equations involve Navier–Stokes flow, convection and conduction heat transfer, and the Maxwell-Stefan diffusion and convection mass transfer.)

  4. 4.

    Develop the FBCVD model presented for the case C2H2 is used as carbon source.

  5. 5.

    How the model presented for FBCVD synthesis of CNT will be changed if the process is considered non-isothermal and non adiabatic?

  6. 6.

    Carbon nanotubes are produced via CVD of benzene using Ferrocene as catalyst. Discuss if the surface kinetic controls CNT formation or mass transport.

  7. 7.

    What are the special constraints in selecting variables for production of nanoparticles through CVD process?

  8. 8.

    What are differences and similarities in nanoparticle synthesis through co-precipitation and CVS?

  9. 9.

    Comparing growth rate in the diffusion regime and surface growth regime in the precipitation process, explain which parameters affect the formation of nanoparticles uniformly.

  10. 10.

    Discuss about effects of nucleation, growth, coalescence, sintering, and Oswald ripening phenomena on the particle size distribution of the nanoparticles synthesized via CVS.

  11. 11.

    What do you think about advantageous and disadvantageous of fluidized bed reactor relative the other gas-catalyst contacting systems (such as fixed-bed, rotary drum, and spray) in synthesis of nanoparticles through CVD.

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Salaheldeen Elnashaie, S., Danafar, F., Hashemipour Rafsanjani, H. (2015). Learning Synergism in Nanotechnology and Chemical Engineering by Case Study. In: Nanotechnology for Chemical Engineers. Springer, Singapore. https://doi.org/10.1007/978-981-287-496-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-287-496-2_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-287-495-5

  • Online ISBN: 978-981-287-496-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics