Skip to main content

Summary and Remarks for Future Research

  • Chapter
  • First Online:
Visual Quality Assessment by Machine Learning

Part of the book series: SpringerBriefs in Electrical and Computer Engineering ((BRIEFSSIGNAL))

  • 1349 Accesses

Abstract

There has been increasing interest in visual quality assessment (VQA) during recent years. Of all these VQA methods, machine learning (ML) based ones became more and more popular. In this book, ML-based VQA and related issues have been extensively investigated. Chapters 12 present the fundamental knowledge of VQA and ML. In Chap. 3, ML was exploited for image feature selection and image feature learning. Chapter 4 presents two ML-based frameworks for pooling image features of an image into a number score. In Chap. 5, two metric fusion frameworks designed to combine multiple existing metrics into a better one, were developed by the aid of ML tools.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lin W, Kuo C-CJ (2011) Perceptual visual quality metrics: a survey. J Vis Commun Image Represent 22(4):297–312

    Google Scholar 

  2. Campbell D, Jones E, Glavin M (2009) Audio quality assessment techniques—a review and recent developments. Signal Process 89(8):1489–1500

    Article  MATH  Google Scholar 

  3. Winkler S (2005) Digital video quality: vision models and metrics. Wiley, Hoboken

    Google Scholar 

  4. Winkler S, Mohandas P (2008) The evolution of video quality measurement: from PSNR to hybrid metrics. IEEE Trans Broadcast 54(3):660–668

    Article  Google Scholar 

  5. Daly S (1993) The visible differences predictor: an algorithm for the assessment of image fidelity. In: Watson AB (ed) Digital images and human vision. MIT Press, Cambridge, pp 179–206

    Google Scholar 

  6. Lubin J (1995) A visual discrimination model for imaging system design and evaluation. In: Peli E (ed) Vision models for target detection and recognition. World Scientific, Singapore

    Google Scholar 

  7. Watson AB, Hu J, McGowan JF (2001) DVQ: a digital video quality metric based on human vision. J Electron Imaging 10(1):20–29

    Article  Google Scholar 

  8. Winkler S (1999) A perceptual distortion metric for digital color video. In: Proceedings of SPIE, vol 3644. San Jose, 23–29 Jan, pp 175–184

    Google Scholar 

  9. Kelly DH (1979) Motion and vision II: stabilized spatiotemporal threshold surface. J Opt Soc Am 69(10):1340–1349

    Article  Google Scholar 

  10. van Nes FL, Bouman MA (1967) Spatial modulation transfer in the human eye. J Opt Soc Am 57:401–406

    Article  Google Scholar 

  11. Blakemore C, Campbell FW (1969) Adaptation to spatial stimuli. J Physiol 200:11–13

    Google Scholar 

  12. Legge GE, Foley JM (1980) Contrast masking in human vision. J Opt Soc Am 70:1458–1471

    Article  Google Scholar 

  13. Campbell FW, Kulikowski JJ (1966) Orientational selectivity of the human visual system. J Physiol 187(2):437–445

    Google Scholar 

  14. Wang Z, Bovik AC (2011) Reduced and no reference visual quality assessment—the natural scene statistic model approach. IEEE Signal Process Mag Spec Issue Multimed Qual Assess 29(6):29–40

    Google Scholar 

  15. Wolf S (1997) Measuring the end-to-end performance of digital video systems. IEEE Trans Broadcast 43(3):320–328

    Article  Google Scholar 

  16. Wang Z, Bovik AC, Evan BL (2002) Blind measurement of blocking artifacts in images. In: Proceedings of international conferance on image processing, vol 3, pp 981–984

    Google Scholar 

  17. Miyahara M, Kotani K, Algazi VR (1998) Objective picture quality scale (PQS) for image coding. IEEE Trans Commun 46(9):1215–1225

    Article  Google Scholar 

  18. Marziliano P, Dufaux F, Winkler S, Ebrahimi T(2002) A no-reference perceptual blur metric. In: Proceedings of IEEE international conference on image processing, Melbourne, 15–18 Sept 2002

    Google Scholar 

  19. Wu HR, Yuen M (1997) A generalized block-edge impairment metric (GBIM) for video coding. IEEE Signal Process Lett 4(11):317–320

    Article  Google Scholar 

  20. Avidan S, Shamir A (2007) Seam carving for content-aware image resizing. In: Proceedings on SIGGRAPH, vol 26, New York

    Google Scholar 

  21. Shamir A, Avidan S (2009) Seam-carving for media retargeting. Commun ACM 52(1):77–85

    Google Scholar 

  22. Wolf L, Guttmann M, Cohen-Or D (2007) Non-homogeneous contentdriven video-retargeting. In: Proceedings of ICCV, pp 1–6

    Google Scholar 

  23. Rubinstein M, Shamir A, Avidan S (2009) Multi-operator media retargeting. In: Proceedings onSIGGRAPH, vol 28, pp 2301–2312

    Google Scholar 

  24. Ma L, Lin W, Deng C, Ngan KN (2012) Image retargeting quality assessment: a study of subjective scores and objective metrics. IEEE J Select Top Signal Process 6(6):626–639

    Article  Google Scholar 

  25. Fang Y, Chen Z, Lin W, Lin C-W (2012) Saliency detection in the compressed domain for adaptive image retargeting. IEEE Trans Image process 21(9):3888–3901

    Google Scholar 

  26. Hsu C-C, Lin C-W, Fang Y, Lin W (2014) Objective quality assessment for image retargeting based on perceptual geometric distortion and information loss. IEEE J Select Top Signal Process 8(3):377–389

    Google Scholar 

  27. Fang Y, Zeng K, Wang Z, Lin W, Fang Z, Lin C (2014) Objective quality assessment for image retargeting based on structural similarity. IEEE J Emerg Select Top Circuits Syst 4(1):95–105

    Article  Google Scholar 

  28. Yang H, Lin W, Deng C, Xu L (2014) Study on subjective quality assessment of digital compound images. In: Proceedings of IEEE ISCAS2014, pp 2149–2152, June 2014

    Google Scholar 

  29. Eskicioglu AM, Fisher PS (1995) Image quality measures and their performance. IEEE Trans Commun 43(12):2959–2965

    Article  Google Scholar 

  30. You J, Reiter U, Hannuksela MM, Gabbouj M, Perkis A (2010) Perceptual-based quality assessment for audio-visual services: a survey. Signal Process Image Commun 25(7):482–501 Aug

    Article  Google Scholar 

  31. Chono K, Lin YC, Varodayan D, Miyamoto Y, Girod B (2008) Reduced-reference image quality assessment using distributed source coding. In: Proceedings of IEEE international conference on multimedia and expo, Hanover, Apr 2008, pp 1008–1105

    Google Scholar 

  32. Albonico A, Valenzise G, Naccari M, Tagliasacchi M, Tubaro S (2009) A reduced-reference video structural similarity metric based on no-reference estimation of channel-induced distortion. In: IEEE international conference on acoustics, speech and signal processing (ICASSP)

    Google Scholar 

  33. Bosc E, Pepion R, Le Callet P, Koppel M, Ndjiki-Nya P, Pressigout M, Morin L (2011) Towards a new quality metric for 3-D synthesized view assessment. IEEE J Select Top Signal Process 5(7):1332–1343

    Article  Google Scholar 

  34. Yasakethu SLP, Hewage CTER, Fernando WAC, Kondoz AM (2008) Quality analysis for 3D video using 2D video quality models. IEEE Trans Consum Electron 54(4):1969–1976

    Article  Google Scholar 

  35. Wang Z, Li Q (2007) Video quality assessment using a statistical model of human visual speed perception. J Opti Soc Am A (Optics Image Sci Vision) 24(12):B61–B69

    Google Scholar 

  36. Boev A, Gotchev A, Egiazarian K, Aksay A, Akar GB (2006) Towards compound stereo-video quality metric: a specific encoder-based framework. In: Proceedings of IEEE southwest symposium on image analysis and interpretation, pp 218–222

    Google Scholar 

  37. Han J, Jiang T, Ma S (2012) Stereoscopic video quality assessment model based on spatial-temporal structural information (VCIP)

    Google Scholar 

  38. Zhu Z, Wan Y (2009) Perceptual distortion metric for stereo video quality evaluation. WSEAS Trans Signal Process 5(7):241–250

    Google Scholar 

  39. Jin L, Boev A, Gotchev A, Egiazarian, K (2011) 3D-DCT based perceptual quality assessment of stereo video. In: Proceedings of IEEE international conferance on image processing (ICIP), Sept 2011, pp 2521–2524

    Google Scholar 

  40. Hewage CTER, Martini MG (2011) Reduced-Reference quality assessment for 3D video compression and transmission. IEEE Trans Consum Electron 57(3):1185–1193

    Google Scholar 

  41. Ha K, Kim M (2011) A perceptual quality assessment metric using temporal complexity and disparity information for stereoscopic video. In: Proceedings of IEEE international conferance on image processing, Sept 2011, pp 2525–2528

    Google Scholar 

  42. Chen W et al (2010) New requirements of subjective video quality assessment methodologies for 3DTV

    Google Scholar 

  43. Winkler S, Min D (2013) Stereo/multiview picture quality: overview and recent advances. Signal Process Image Commun 28(10):1358–1373

    Article  Google Scholar 

  44. Steinmetz R (1996) Human perception of jitter and media synchronization. IEEE J Select Areas Commun 14(1):61–72

    Article  Google Scholar 

  45. Arrighi R, Alais D, Burr D (2006) Perceptual synchrony of audiovisual streams for natural and artificial motion sequences. J Vis 6(3):260–268

    Article  Google Scholar 

  46. Lipscomb SD (1999) Cross-modal integration: synchronization of auditory and visual components in simple and complex media. In: Proceedings of forum acusticum, Berlin, Germany

    Google Scholar 

  47. Winkler S, Faller C (2006) Perceived audiovisual quality of low-bitrate multimedia content. IEEE Trans Multimedia 8(5):973–980

    Article  Google Scholar 

  48. Beerends JG, de Caluwe FE (1999) The influence of video quality on perceived audio quality and vice versa. J Audio Eng Soc 47(5):355–362

    Google Scholar 

  49. Jones C, Atkinson DJ (1998) Development of opinion-based audiovisual quality models for desktop video-teleconferencing. In: Proceedings of international workshop on quality of service, Napa, 18–20 May, pp 196–203

    Google Scholar 

  50. Jumisko-Pyykko S (2008) I would like to see the subtitles and the face or at least hear the voice: effects of picture ratio and audiovideo bitrate ratio on perception of quality in mobile television. Multimed Tools Appl 36(1–2):167–184

    Article  Google Scholar 

  51. Ries M, Puglia R, Tebaldi T, Nemethova O, Rupp M (2005) Audiovisual quality estimation for mobile streaming services. In: Proceedings of international symposium on wireless communication systems, Siena, Italy, 5–7 Sept

    Google Scholar 

  52. Hayashi T, Yamagishi K, Tominaga T, Takahashi A (2007) Multimedia quality integration function for videophone services. In: Proceedings of IEEE international conferance global telecommunication, pp 2735–2739

    Google Scholar 

  53. Goudarzi M, Sun L, Ifeachor E (2010) Audiovisual quality estimation for video calls in wireless applications. In: Proceedings of IEEE GLOBECOM, pp 1–5

    Google Scholar 

  54. Hands DS (2004) A basic multimedia quality model. IEEE Trans Multimedia 6(6):806–816

    Article  Google Scholar 

  55. Winkler S, Faller C (2005) Audiovisual quality evaluation of low-bitrate video. In: Proceedings of SPIE human vision and electronic imaging, vol 5666. San Jose, 16–20 Jan, pp 139–148

    Google Scholar 

  56. Thang TC, Kang JW, Ro YM (2007) Graph-based perceptual quality model for audiovisual contents. In: Proceedings of the IEEE international conference on multimedia and expo (ICME07), Beijing, China, July 2007, pp 312–315

    Google Scholar 

  57. Thang TC, Kim YS, Kim CS, Ro YM (2006) Quality models for audiovisual streaming. In: Proceedings on SPIE electronic imaging, vol 6059, pp 1–10

    Google Scholar 

  58. Thang TC, Ro YM (2005) Multimedia quality evaluation across different modalities. In: Proceedings on SPIE electron imaging, vol 5668, pp 270–279

    Google Scholar 

  59. Bolin MR, Meyer GW (1999) A visual difference metric for realistic image synthesis. In: Proceedings of SPIE human vision and electronic imaging, vol 3644, pp 106–120

    Google Scholar 

  60. Dong L, Lin W, Fang Y, Wu S, Seah HS (2014) Saliency detection in computer rendered images based on object-level contrast. J Vis Commun Image Represent 24(1):27–38

    Google Scholar 

  61. Cater K, Chalmers A, Ward G (2003) Detail to attention: exploiting visual tasks for selective rendering. In: Proceedings of the Eurographics symposium on rendering, pp 270–280

    Google Scholar 

  62. Daly S (2001) Engineering observations from spatiovelocity and spatiotemporal visual models. In: van den Branden Lambrecht CJ (ed) Vision models and applications to image and video processing. Kluwer Academic Publishers, Norwell

    Google Scholar 

  63. Ramasubramanian M, Pattanaik SN, Greenberg DP (1999) A perceptual based physical error metric for realistic image synthesis. Comput Graph (SIGGRAPH 99 Conf Proc) 33(4):73–82

    Google Scholar 

  64. Tian D, AlRegib G (2004) FQM: a fast quality measure for efficient transmission of textured 3D models. In: Proceedings of the 12th annual ACM international conference on multimedia. ACM press, New york

    Google Scholar 

  65. Yang S, Lee C-H, Kuo C-CJ (2004) Optimized mesh and texture multiplexing for progressive textured model transmission. In: Proceedings of 12th annual ACM international conference on multimedia. ACM press, New york

    Google Scholar 

  66. Kim SL, Choi GJS (2009) Real-time tracking of visually attended objects in virtual environments and its application to LOD. IEEE Trans Vis Comput Graph 15(1):6–19

    Article  Google Scholar 

  67. Ramanarayanan G, Ferwerda J, Walter B, Bala K (2007) Visual equivalence: towards a new standard for image fidelity. ACM Trans Graph 26(3):3:1–3:12

    Google Scholar 

  68. Ebert DS, Buxton B, Davies P, Fishman EK, Glassner A (2002) The future of computer graphics: an enabling technology. In: Proceedings of SIGGRAPH

    Google Scholar 

  69. Ferwerda JA (2001) Elements of early vision for computer graphics. IEEE Comput Graph Appl 21(5):22–33

    Google Scholar 

  70. Tumblin J, Ferwerda JA (2001) Guest editors’ introduction: applied perception. IEEE Comput Graph Appl 21(5):61–77

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long Xu .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Xu, L., Lin, W., Kuo, CC.J. (2015). Summary and Remarks for Future Research. In: Visual Quality Assessment by Machine Learning. SpringerBriefs in Electrical and Computer Engineering(). Springer, Singapore. https://doi.org/10.1007/978-981-287-468-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-287-468-9_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-287-467-2

  • Online ISBN: 978-981-287-468-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics