Skip to main content

Dynamics of Jets Issuing from Trailing-Edge Modified Nozzles

  • Chapter
  • First Online:
Book cover Vortex Rings and Jets

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 111))

Abstract

This chapter will elaborate upon the fundamental flow behaviour associated with vortex-rings and jets issuing from nozzles, where the nozzle trailing-edges or lips are physically modified with selected geometries. This technique represents a passive but robust form of manipulating the underlying vortex-ring and jet circulation, such that improvements to their entrainment and mixing characteristics can be achieved. Implementations of simple inclined, hybrid inclined, notched, crown-shaped, chevron and stepped nozzles, as well as some of their implementations in circular and noncircular jets, single-stream or dual-stream coaxial jets, will be discussed as part of the overall understanding. In particular, recently observed influences of trailing-edge modifications upon the axis-switching behaviour of noncircular jets, as well as their relationships with coaxial jet flow parameters such as the velocity- and area-ratios will be presented. On top of key flow physics insights in terms of how the nozzle trailing-edge geometry will confer distortionary effects upon the basic vortex structures, the impact of such nozzles upon jet mixing efficacies will be discussed as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abramovich, G. N. (1963). The theory of turbulent jets. Cambridge: MIT Press.

    Google Scholar 

  2. Alkislar, M. B., Krothapalli, A., & Butler, G. W. (2007). The effect of streamwise vortices on the aeroacoustics of a Mach 0.9 jet. Journal of Fluid Mechanics, 578, 139–169.

    Article  MATH  Google Scholar 

  3. Babucke, A., Kloker, M., & Rist, U. (2008). Direct numerical simulation of a serrated nozzle end for jet-noise reduction. High performance computing in science and engineering 07 (pp. 319–337). Berlin, Heidelberg: Springer.

    Google Scholar 

  4. Bai, S. (1954). Fluid dynamics of jets. New York: Van Nostrand.

    Google Scholar 

  5. Balarac, G., & Métais, O. (2005). The near field of coaxial jets: A numerical study. Physics of Fluids, 17, 065102.

    Article  Google Scholar 

  6. Balarac, G., Métais, O., & Lesieur, M. (2007). Mixing enhancement in coaxial jets through inflow forcing: A numerical study. Physics of Fluids, 19, 075102.

    Article  Google Scholar 

  7. Beer, J. M., Chigier, N. A., & Lee, K. B. (1963). Modeling of double concentric burning jets. In Symposium (International) on Combustion (Vol. 9(1), pp. 892–900). Amsterdam: Elsevier.

    Google Scholar 

  8. Bridges, J. E. (2012). Acoustic measurements of rectangular nozzles with bevel. National Aeronautics and Space Administration, Glenn Research Center. NASA/TM-2012-217674.

    Google Scholar 

  9. Buresti, G., Talamelli, A., & Petagna, P. (1994). Experimental characterization of the velocity field of a coaxial jet configuration. Experimental Thermal and Fluid Science, 9(2), 135–146.

    Article  Google Scholar 

  10. Cai, J., Tsai, H. M., & Liu, F. (2010). Numerical simulation of vortical flows in the near field of jets from notched circular nozzles. Computers & Fluids, 39(3), 539–552.

    Article  MATH  Google Scholar 

  11. Callender, B., Gutmark, E. J., & Martens, S. (2005). Far-field acoustic investigation into chevron nozzle mechanisms and trends. AIAA Journal, 43(1), 87–95.

    Article  Google Scholar 

  12. Callender, B., Gutmark, E., & Martens, S. (2008). Near-field investigation of chevron nozzle mechanisms. AIAA Journal, 46(1), 36–45.

    Article  Google Scholar 

  13. Callender, B., Gutmark, E. J., & Martens, S. (2010). Flow field characterization of coaxial conical and serrated (chevron) nozzles. Experiments in Fluids, 48(4), 637–649.

    Article  Google Scholar 

  14. Champagne, F. H., & Wygnanski, I. J. (1971). An experimental investigation of coaxial turbulent jets. International Journal of Heat and Mass Transfer, 14(9), 1445–1464.

    Article  Google Scholar 

  15. Dahm, W. J., Frieler, C. E., & Tryggvason, G. (1992). Vortex structure and dynamics in the near field of a coaxial jet. Journal of Fluid Mechanics, 241, 371–402.

    Article  Google Scholar 

  16. Didden, N. (1979). On the formation of vortex rings: Rolling-up and production of circulation. ZeitschriftfürangewandteMathematik und Physik ZAMP, 30(1), 101–116.

    Article  Google Scholar 

  17. Eschricht, D., Panek, L. J. Y., Michel, U., & Thiele, F. (2008). Jet noise prediction of a serrated nozzle. AIAA Paper, 2971.

    Google Scholar 

  18. Gharib, M., Rambod, E., & Shariff, K. (1998). A universal time scale for vortex ring formation. Journal of Fluid Mechanics, 360, 121–140.

    Article  MATH  MathSciNet  Google Scholar 

  19. Glezer, A. (1988). The formation of vortex rings. Physics of Fluids, 31(12), 3532–3542.

    Article  Google Scholar 

  20. Grinstein, F. F., & DeVore, C. R. (1996). Dynamics of coherent structures and transition to turbulence in free square jets. Physics of Fluids, 8(5), 1237–1251.

    Article  MATH  MathSciNet  Google Scholar 

  21. Husain, H. S., & Hussain, F. (1991). Elliptic jets, part 2. Dynamics of coherent structures: pairing. Journal of Fluid Mechanics, 233, 439–482.

    Article  Google Scholar 

  22. Husain, H. S., & Hussain, F. (1993). Elliptic jets, part 3. Dynamics of preferred mode coherent structure. Journal of Fluid Mechanics, 248, 315–361.

    Article  Google Scholar 

  23. Hussain, F., & Husain, H. S. (1989). Elliptic jets, part 1. Characteristics of unexcited and excited jets. Journal of Fluid Mechanics, 208, 257–320.

    Article  Google Scholar 

  24. Kibens, V., & Wlezien, R. W. (1985) Active control of jets from indeterminate-origin nozzles. In AIAA Shear Flow Control Conference, AIAA-1985-0542.

    Google Scholar 

  25. Kim, J. H., & Samimy, M. (1999). Mixing enhancement via nozzle trailing edge modifications in a high speed rectangular jet. Physics of Fluids, 11(9), 2731–2742.

    Article  MATH  Google Scholar 

  26. Kim, J. H., & Samimy, M. (2000). On mixing enhancement via nozzle trailing-edge modifications in high-speed jets. AIAA Journal, 38(5), 935–937.

    Article  Google Scholar 

  27. Knowles, K., & Saddington, A. J. (2006). A review of jet mixing enhancement for aircraft propulsion applications. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 220(2), 103–127.

    Article  Google Scholar 

  28. Ko, N. W. M., & Au, H. (1985). Coaxial jets of different mean velocity ratios. Journal of Sound and Vibration, 100(2), 211–232.

    Article  Google Scholar 

  29. Ko, N. W. M., & Kwan, A. S. H. (1976a). The initial region of subsonic coaxial jets. Journal of Fluid Mechanics, 73, 305–332.

    Google Scholar 

  30. Kwan, A. S. H., & Ko, N. W. M. (1976b). Coherent structures in subsonic coaxial jets. Journal of Sound and Vibration, 48(2), 203–219.

    Google Scholar 

  31. Kwan, A. S. H., & Ko, N. W. M. (1977). The initial region of subsonic coaxial jets, part 2. Journal of Fluid Mechanics, 82, 273–287.

    Article  Google Scholar 

  32. Le, T., Borazjani, I., Kang, S., & Sotiropoulos, F. (2011). On the structure of vortex rings from inclined nozzles. Journal of Fluid Mechanics, 686, 451–483.

    Article  MATH  Google Scholar 

  33. Lee, J. H. W., & Chu, V. H. (2003). Turbulent jets and plumes: A Lagrangian approach. Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  34. Liepmann, D., & Gharib, M. (1992). The role of streamwise vorticity in the near-field entrainment of round jets. Journal of Fluid Mechanics, 245, 643–668.

    Article  Google Scholar 

  35. Lim, T. T. (1998). On the breakdown of vortex rings from inclined nozzles. Physics of Fluids, 10(7), 1–6.

    Article  Google Scholar 

  36. Lim, T. T., & Nickels, T. B. (1995). Vortex rings. Fluid vortices (pp. 95–153). Netherlands: Springer.

    Chapter  Google Scholar 

  37. Longmire, E. K., & Duong, L. H. (1996). Bifurcating jets generated with stepped and sawtooth nozzles. Physics of Fluids, 8(4), 978–992.

    Article  Google Scholar 

  38. Longmire, E. K., Eaton, J. K., & Elkins, C. J. (1992). Control of jet structure by crown-shaped nozzles. AIAA Journal, 30(2), 505–512.

    Article  Google Scholar 

  39. Martens, S. (2002). Jet noise reduction technology development at GE aircraft engines. ICAS Paper, 842.

    Google Scholar 

  40. Matsumoto, R., Kimoto, K., & Tsuchimoto, N. (1973). A study on double concentric jets (1st report, experimental results of air-air flow). Bulletin of JSME, 16(93), 529–540.

    Article  Google Scholar 

  41. Maxworthy, T. (1972). The structure and stability of vortex rings. Journal of Fluid Mechanics, 51, 15–32.

    Article  Google Scholar 

  42. Maxworthy, T. (1974). Turbulent vortex rings. Journal of Fluid Mechanics, 64, 227–240.

    Article  MATH  Google Scholar 

  43. Maxworthy, T. (1977). Some experimental studies of vortex rings. Journal of Fluid Mechanics, 81, 465–495.

    Article  Google Scholar 

  44. Mi, J., Nathan, G. J., & Luxton, R. E. (2000). Centreline mixing characteristics of jets from nine differently shaped nozzles. Experiments in Fluids, 28(1), 93–94.

    Article  Google Scholar 

  45. Mohseni, K., & Gharib, M. (1998). A model for universal time scale of vortex ring formation. Physics of Fluids, 10(10), 2436–2438.

    Article  Google Scholar 

  46. Morton, B. R. (1962). Coaxial turbulent jets. International Journal of Heat and Mass Transfer, 5(10), 955–965.

    Article  Google Scholar 

  47. New, T. H. (2009). An experimental study on jets issuing from elliptic inclined nozzles. Experiments in Fluids, 46(6), 1139–1157.

    Article  Google Scholar 

  48. New, T. H. (2010). Effects of notch geometry and sharpness on turbulent jets issuing from indeterminate-origin notched nozzles. European Journal of Mechanics-B/Fluids, 29(4), 309–320.

    Article  MATH  Google Scholar 

  49. New, T. H., & Tay, W. L. (2006). Effects of cross-stream radial injections on a round jet. Journal of Turbulence, 7(N57), 1–20.

    Google Scholar 

  50. New, T. H., & Tsai, H. M. (2007). Experimental investigations on indeterminate-origin V- and A-notched jets. AIAA Journal, 45(4), 828–839.

    Article  Google Scholar 

  51. New, T. H., & Tsioli, E. (2010). On the flow behaviour of jets issuing from issuing from inclined coaxial nozzles. In 14th International Symposium on Flow Visualization, pp. 1–8.

    Google Scholar 

  52. New, T. H., & Tsioli, E. (2011). An experimental study on the vortical structures and behaviour of jets issuing from inclined coaxial nozzles. Experiments in Fluids, 51(4), 917–932.

    Article  Google Scholar 

  53. New, T. H., & Tsioli, E. (2014). Effects of area-ratio on the near-field flow characteristics and deflection of circular inclined coaxial jets. Experimental Thermal and Fluid Science, 54, 225–236.

    Article  Google Scholar 

  54. New, T. H., & Tsovolos, D. (2009a). Influence of nozzle sharpness on the flowfields of V-notched nozzle jets. Physics of Fluids, 21(8), 084107, 1–18.

    Google Scholar 

  55. New, T. H., & Tsovolos, D. (2009b). Characterization of jets issuing from circular nozzles with A-shaped notch lip-modifications. Journal of Turbulence, 10(24), 1–20.

    Google Scholar 

  56. New, T. H., & Tsovolos, D. (2009c). Flow characteristics of inclined elliptic nozzles. In 6th International Symposium on Turbulence and Shear Flow Phenomena (Vol. 2, pp. 941–946).

    Google Scholar 

  57. New, T. H., & Tsovolos, D. (2009d). A digital particle image velocimetry study on jets issuing from hybrid inclined nozzles. Flow, Turbulence and Combustion, 83(4), 485–509.

    Google Scholar 

  58. New, T. H., & Tsovolos, D. (2010). Cross-stream behaviour and flow characteristics of hybrid inclined nozzle jets. Journal of Turbulence, 11(N18), 1–23.

    Google Scholar 

  59. New, T. H., & Tsovolos, D. (2011). On the vortical structures and behaviour of inclined elliptic jets. European Journal of Mechanics-B/Fluids, 30(4), 437–450.

    Article  MATH  Google Scholar 

  60. New, T. H., & Tsovolos, D. (2012a). On the flow characteristics of minor-plane inclined elliptic jets. Experimental Thermal and Fluid Science, 38, 94–106.

    Google Scholar 

  61. New, T. H., & Tsovolos, D. (2012b). Vortex behaviour and velocity characteristics of jets issuing from hybrid inclined elliptic nozzles. Flow, Turbulence and Combustion, 89(4), 601–625.

    Google Scholar 

  62. New, T. H., & Tsovolos, D. (2013). On the vortex structures and behaviour of notched elliptic jets. Experimental Thermal and Fluid Science, 49, 51–66.

    Article  Google Scholar 

  63. New, T. H., Lim, K. M. K., & Tsai, H. M. (2005). Vortical structures in a laminar V-notched indeterminate-origin jet. Physics of Fluids, 17(5), 054108, 1–14.

    Google Scholar 

  64. Norbury, J. (1973). A family of steady vortex rings. Journal Fluid Mechanics, 57, 417–431.

    Google Scholar 

  65. Page, G. J., McGuirk, J. J., Hossain, M., Hughes, N.J., & Trumper, M. T. (2002). A computational and experimental investigation of serrated coaxial nozzles. AIAA paper, 2554.

    Google Scholar 

  66. Powers, R. W., & McLaughlin, D. K. (2012). Acoustic measurements of scale models of military style supersonic beveled nozzle jets with interior corrugations. In 18th AIAA/CEAS Aeroacoustics Conference, AIAA-2012-2116.

    Google Scholar 

  67. Rajaratnam, N. (1976). Turbulent jets. Developments in water science. Amsterdam: Elsevier.

    Google Scholar 

  68. Raman, G. (1997). Screech tones from rectangular jets with spanwise oblique shock-cell structures. Journal of Fluid Mechanics, 330, 141–168.

    Article  Google Scholar 

  69. Raman, G. (1999). Shock-induced flow resonance in supersonic jets of complex geometry. Physics of Fluids, 11, 692–709.

    Article  MATH  MathSciNet  Google Scholar 

  70. Rehab, H., Villermaux, E., & Hopfinger, E. J. (1997). Flow regimes of large-velocity-ratio coaxial jets. Journal of Fluid Mechanics, 345, 357–381.

    Article  MathSciNet  Google Scholar 

  71. Reynier, P., & Ha Minh, H. (1998). Numerical prediction of unsteady compressible turbulent coaxial jets. Computers & Fluids, 27(2), 239–254.

    Article  MATH  Google Scholar 

  72. Rosenfeld, M., Rambod, E., & Gharib, M. (1998). Circulation and formation number of laminar vortex rings. Journal of Fluid Mechanics, 376, 297–318.

    Article  MATH  MathSciNet  Google Scholar 

  73. Sadr, R., & Klewicki, J. C. (2003). An experimental investigation of the near-field flow development in coaxial jets. Physics of Fluids, 15(5), 1233–1246.

    Article  Google Scholar 

  74. Saffman, P. G. (1978). The number of waves on unstable vortex rings. Journal of Fluid Mechanics, 84, 625–639.

    Article  MathSciNet  Google Scholar 

  75. Saiyed, N. H., Mikkelsen, K. L., & Bridges, J. E. (2003). Acoustics and thrust of quiet separate-flow high-bypass-ratio nozzles. AIAA Journal, 41(3), 372–378.

    Article  Google Scholar 

  76. Samimy, M., Kim, J. H., Clancy, P. S., & Martens, S. (1998). Passive control of supersonic rectangular jets via nozzle trailing-edge modifications. AIAA Journal, 36(7), 1230–1239.

    Article  Google Scholar 

  77. Shariff, K., & Leonard, A. (1992). Vortex rings. Annual Review of Fluid Mechanics, 24(1), 235–279.

    Article  MathSciNet  Google Scholar 

  78. Shi, S., & New, T. H. (2013). Some observations in the vortex-turning behaviour of noncircular inclined jets. Experiments in Fluids, 54(11), 1614.

    Article  Google Scholar 

  79. Shu, F., Plesniak, M., & Sojka, P. (2005). Indeterminate-origin nozzles to control jet structure and evolution. Journal of Turbulence, 6(26), 1–18.

    MathSciNet  Google Scholar 

  80. Shu, F., Plesniak, M., & Sojka, P. (2005). Visualization of streamwise vortex pairs in an indeterminate origin (IO) nozzle jet. Journal of Visualization, 8(3), 195.

    Article  Google Scholar 

  81. Shu, F., Plesniak, M., & Sojka, P. (2007). Evolution of vortical structures in indeterminate-origin nozzle jets. Journal of Flow Visualization and Image Processing, 14(2), 143–154.

    Article  Google Scholar 

  82. Tam, C., Shen, H., & Raman, G. (1997). Screech tones of supersonic jets from bevelled rectangular nozzles. AIAA Journal, 35(7), 1119–1125.

    Article  Google Scholar 

  83. Tinney, C. E., & Jordan, P. (2008). The near pressure field of co-axial subsonic jets. Journal of Fluid Mechanics, 611, 175–204.

    Article  MATH  Google Scholar 

  84. Troolin, D. R., & Longmire, E. K. (2010). Volumetric velocity measurements of vortex ringsfrom inclined exits. Experiments in Fluids, 48(3), 409–420.

    Article  Google Scholar 

  85. Tsioli, E., & New, T. H. (2009). Near field vortex structures of inclined coaxial jets. In 6th International Symposium on Turbulence and Shear Flow Phenomena (Vol. 2, pp. 499–504).

    Google Scholar 

  86. Tsioli, E., & New, T. H. (2009). Vortex structures in the near-field of inclined coaxial jets. In 39th AIAA Fluid Dynamics Conference AIAA-2009-4316, pp. 1–8.

    Google Scholar 

  87. Tsioli, E., Albets-Chico, X., & Kassinos, S. (2012). A numerical investigation of coaxial jets with complex nozzle geometries. In 9th International ERCOFTAC Symposium on Engineering Turbulence Modelling and Measurements.

    Google Scholar 

  88. Tsovolos, D., & New, T. H. (2009). Alteration of axis-switching behaviour in indeterminate- origin elliptic jets. In 39th AIAA Fluid Dynamics Conference AIAA-2009-4008, pp. 1–10.

    Google Scholar 

  89. Tsovolos, D., & New, T. H. (2010). An experimental study on the flow behaviour of V-notched elliptic jets. In 15th International Symposium on Applications of Laser Techniques to Fluid Mechanics.

    Google Scholar 

  90. Uzun, A., & Hussaini, M. Y. (2009). Simulation of noise generation in the near-nozzle region of a chevron nozzle jet. AIAA Journal, 47(8), 1793–1810.

    Article  Google Scholar 

  91. Villermaux, E., & Rehab, H. (2000). Mixing in coaxial jets. Journal of Fluid Mechanics, 425, 161–185.

    Article  MATH  Google Scholar 

  92. Viswanathan, K. (2005). Nozzle shaping for reduction of jet noise from single jets. AIAA Journal, 43(5), 1008–1022.

    Article  MathSciNet  Google Scholar 

  93. Viswanathan, K. (2006). Elegant concept for reduction of jet noise from turbofan engines. Journal of Aircraft, 43(3), 616–626.

    Article  MathSciNet  Google Scholar 

  94. Viswanathan, K. (2006). Noise of dual-stream beveled nozzles at supercritical pressure ratios. Journal of Aircraft, 43(3), 627–638.

    Article  MathSciNet  Google Scholar 

  95. Viswanathan, K., & Czech, M. (2011). Adaptation of the beveled nozzle for high-speed jet noise reduction. AIAA Journal, 49(5), 932–944.

    Article  Google Scholar 

  96. Viswanathan, K., Shur, M., Spalart, P. R., & Strelets, M. (2008). Flow and noise predictions for single and dual-stream beveled nozzles. AIAA Journal, 46(3), 601–626.

    Article  Google Scholar 

  97. Webster, D. R., & Longmire, E. K. (1997). Vortex dynamics in jets from inclined nozzles. Physics of Fluids, 9(3), 655–666.

    Article  MATH  MathSciNet  Google Scholar 

  98. Webster, D. R., & Longmire, E. K. (1998). Vortex rings from cylinders with inclined exits. Physics of Fluids, 10(2), 400–416.

    Article  Google Scholar 

  99. Wicker, R. B., & Eaton, J. K. (1994). Near field of a coaxial jet with and without axial excitation. AIAA Journal, 32(3), 542–546.

    Article  Google Scholar 

  100. Widnall, S. E., Bliss, D. B., & Tsai, C. Y. (1974). The instability of short waves on a vortex ring. Journal of Fluid Mechanics, 66, 35–47.

    Article  MATH  MathSciNet  Google Scholar 

  101. Widnall, S. E., & Sullivan, J. P. (1973). On the stability of vortex rings. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 332(1590), 335–353.

    Google Scholar 

  102. Williams, T. J., Ali, M. R. M. H., & Anderson, J. S. (1969). Noise and flow characteristics of coaxial jets. Journal of Mechanical Engineering Science, 11(2), 133–142.

    Article  Google Scholar 

  103. Wlezien, R. W., & Kibens, V. (1986). Passive control of jets with indeterminate origins. AIAA Journal, 24(8), 1263–1270.

    Article  Google Scholar 

  104. Xia, H., & Tucker, P. G. (2012). Numerical simulation of single-stream jets from a serrated nozzle. Flow, Turbulence and Combustion, 88(1–2), 3–18.

    Article  MATH  Google Scholar 

  105. Yan, J., Eschricht, D., & Thiele, F. (2009). Numerical investigation of the noise emission from serratednozzles in coaxial jets. High Performance Computing in Science and Engineering, Garching/Munich 2007 (pp. 325–334). Berlin: Springer.

    Google Scholar 

  106. Yan, J., Panek, L., & Thiele, F. (2007). Simulation of jet noise from a long-cowl nozzle with serrations. AIAA Paper-3635.

    Google Scholar 

  107. Zakharin, B., Kit, E., & Wygnanski, I. (2009). On a turbulent mixing layer created downstream of a “Λ” notch simulating one wavelength of a chevronnozzle. Flow, Turbulence and Combustion, 83(3), 371–388.

    Google Scholar 

  108. Zaman, K. B., Bridges, J. E., & Huff, D. L. (2011). Evolution from ‘tabs’ to ‘chevron technology’-a review. International Journal of Aeroacoustics, 10(5), 685–710.

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the encouragement and support provided by UK Engineering and Physical Science Research Council, The Royal Society, University of Liverpool, Defence Science and Technology Laboratory (Dstl), S & C Thermofluids Ltd, Temasek Laboratories at National University of Singapore, as well as Nanyang Technological University for their fundamental research investigations on trailing-edge modified nozzles.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. H. New .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

New, T.H., Tsovolos, D., Tsioli, E. (2015). Dynamics of Jets Issuing from Trailing-Edge Modified Nozzles. In: New, D., Yu, S. (eds) Vortex Rings and Jets. Fluid Mechanics and Its Applications, vol 111. Springer, Singapore. https://doi.org/10.1007/978-981-287-396-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-287-396-5_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-287-395-8

  • Online ISBN: 978-981-287-396-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics