Skip to main content

Starting Jets and Vortex Ring Pinch-Off

  • Chapter
  • First Online:
Vortex Rings and Jets

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 111))

Abstract

Starting jet is commonly defined as the transient motion produced when a viscous incompressible fluid is forced from an initial state of rest Cantwell (Journal of Fluid Mechanics, 173, 159–189 [6]). The applied force can be time dependent in the form of an impulsive, step or ramp function acting at a point or along a line. Starting jet can be used in fundamental study of vortex ring dynamics, synthetic jets, mixing enhancement, and vortex-enhanced unsteady propulsion systems. Researches related to starting jets have been carried out broadly in two directions. The first direction is focused on the underlying mechanism for the vortex ring pinch-off, which is defined as the process whereby a forming vortex ring is no longer able to absorb vorticity flux from the jet source via the separated shear layer . Several theoretical models are proposed to predict a critical time scale for the pinch-off process, dubbed as the formation number F, for different flow conditions. The second direction is focused on its practical applications in entrainment enhancement as well as pulsed-jet propulsion systems. Specifically, due to the restricted vortex ring formation in starting jet , the propulsive efficiency can be effectively improved over the steady jet propulsion by increasing the generated thrust via the vortex over-pressure in the near-wake and by decreasing the kinetic energy loss in the wake via vortex entrainment. In this chapter, we intend to provide the readers with some basic ideas on the dynamic process of vortex ring formation in a starting jet , and its practical application in nature and engineering fields. This chapter is divided into four parts. The first part provides a brief introduction of the starting jet and the phenomenon of vortex ring pinch-off. The discussion of the underlying mechanisms and its theoretical explanation are provided in part two. In the third part, the practical application of starting jets in engineering systems will be explained and discussed. This chapter ends with a summary and an outlook for future study on the starting jet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allen, J. J. & Naitoh, T. (2005). Experimental study of the production of vortex rings using a variable diameter orifice. Physics of Fluids, 17(6), 061701.

    Google Scholar 

  2. Auerbach, D. (1991). Stirring properties of vortex rings. Phys Fluids A-Fluid, 3, 1351–1355.

    Article  Google Scholar 

  3. Bartol, I. K., Krueger, P. S., Stewart, W. J., & Thompson, J. T. (2009). Hydrodynamics of pulsed jetting in juvenile and adult brief squid Lolliguncula brevis: Evidence of multiple jet ‘modes’ and their implications for propulsive efficiency. Journal of Experimental Biology, 212, 1889–1903.

    Article  Google Scholar 

  4. Bartol, I. K., Krueger, P. S., Thompson, J. T., & Stewart, W. J. (2008). Swimming dynamics and propulsive efficiency of squids throughout ontogeny. Integrative and Comparative Biology, 48, 720–733.

    Article  Google Scholar 

  5. Bremhorst, K., & Watson, R. D. (1981). Velocity-field and entrainment of a pulsed core jet. Journal of Fluids Engineering T ASME, 103, 605–608.

    Article  Google Scholar 

  6. Cantwell, B. J. (1986). Viscous starting jets. Journal of Fluid Mechanics, 173, 159–189.

    Article  MATH  Google Scholar 

  7. Cossali, G. E., Coghe, A., & Araneo, L. (2001). Near-field entrainment in an impulsively started turbulent gas jet. AIAA Journal, 39, 1113–1122.

    Article  Google Scholar 

  8. Dabiri, J. O. (2009). Optimal vortex formation as a unifying principle in biological propulsion. Annual Review of Fluid Mechanics, 41, 17–33.

    Article  MathSciNet  Google Scholar 

  9. Dabiri, J. O., & Gharib, M. (2004). Delay of vortex ring pinchoff by an imposed bulk counterflow. Physics of Fluids, 16, L28–L30.

    Article  Google Scholar 

  10. Dabiri, J. O., & Gharib, M. (2004). Fluid entrainment by isolated vortex rings. Journal of Fluid Mechanics, 511, 311–331.

    Article  MATH  Google Scholar 

  11. Dabiri, J. O., & Gharib, M. (2005). Starting flow through nozzles with temporally variable exit diameter. Journal of Fluid Mechanics, 538, 111–136.

    Article  MATH  Google Scholar 

  12. Didden, N. (1979). Formation of vortex rings—Rolling-up and production of circulation. Zeitschrift fur Angewandte Mathematik und Physik, 30, 101–116.

    Article  Google Scholar 

  13. Fraenkel, L. E. (1972). Examples of steady vortex rings of small cross-section in an ideal fluid. Journal of Fluid Mechanics, 51, 119–135.

    Article  MATH  Google Scholar 

  14. Gao, L., & Yu, S. C. M. (2010). A model for the pinch-off process of the leading vortex ring in a starting jet. Journal of Fluid Mechanics, 656, 205–222.

    Article  MATH  Google Scholar 

  15. Gao, L., & Yu, S. C. M. (2012). Development of the trailing shear layer in a starting jet during pinch-off. Journal of Fluid Mechanics, 700, 382–405.

    Article  MATH  Google Scholar 

  16. Gharib, M., Rambod, E., & Shariff, K. (1998). A universal time scale for vortex ring formation. Journal of Fluid Mechanics, 360, 121–140.

    Article  MATH  MathSciNet  Google Scholar 

  17. Glezer, A. (1988). The formation of vortex rings. Physics of Fluids, 31, 3532–3542.

    Article  Google Scholar 

  18. Heeg, R. S., & Riley, N. (1997). Simulations of the formation of an axisymmetric vortex ring. Journal of Fluid Mechanics, 339, 199–211.

    Article  MATH  MathSciNet  Google Scholar 

  19. Hettel, M., Wetzel, F., Habisreuther, P., & Bockhorn, H. (2007). Numerical verification of the similarity laws for the formation of laminar vortex rings. Journal of Fluid Mechanics, 590, 35–60.

    Article  MATH  Google Scholar 

  20. Hill, M. J. M. (1894). On a spherical vortex. Proceedings of the Royal Society of London, A185, 213–245.

    Google Scholar 

  21. James, S., & Madnia, C. K. (1996). Direct numerical simulation of a laminar vortex ring. Physics of Fluids, 8, 2400–2414.

    Article  MATH  Google Scholar 

  22. Kaden, H. (1931). Aufwicklung einer unstabilen Unstetigkeitsfläche. Ingenieur Archiv, 2, 140–168.

    Article  Google Scholar 

  23. Krieg, M., & Mohseni, K. (2008). Thrust characterization of a bioinspired vortex ring thruster for locomotion of underwater robots. IEEE Journal of Oceanic Engineering, 33, 123–132.

    Article  Google Scholar 

  24. Krueger, P. S., Dabiri, J. O., & Gharib, M. (2006). The formation number of vortex rings formed in uniform background co-flow. Journal of Fluid Mechanics, 556, 147–166.

    Article  MATH  Google Scholar 

  25. Krueger, P. S., & Gharib, A. (2005). Thrust augmentation and vortex ring evolution in a fully pulsed jet. AIAA Journal, 43, 792–801.

    Article  Google Scholar 

  26. Krueger, P. S., & Gharib, M. (2003). The significance of vortex ring formation to the impulse and thrust of a starting jet. Physics of Fluids, 15, 1271–1281.

    Article  MathSciNet  Google Scholar 

  27. Lawson, J. M., & Dawson, J. R. (2013). The formation of turbulent vortex rings by synthetic jets. Physics of Fluids, 25(10), 105113.

    Article  Google Scholar 

  28. Leweke, T., & Williamson, C. H. K. (1998). Cooperative elliptic instability of a vortex pair. Journal of Fluid Mechanics, 360, 85–119.

    Article  MATH  MathSciNet  Google Scholar 

  29. Lim, T. T., Nickels, T. B. (1995). Vortex rings. In S. Green (Ed.), Fluid Vortices (pp. 95–153). Netherlands: Springer.

    Google Scholar 

  30. Linden, P. F., & Turner, J. S. (2001). The formation of ‘optimal’ vortex rings, and the efficiency of propulsion devices. Journal of Fluid Mechanics, 427, 61–72.

    Article  MATH  Google Scholar 

  31. List, E. J. (1982). Turbulent jets and plumes. Annual Review of Fluid Mechanics, 14, 189–212.

    Article  Google Scholar 

  32. Maxworthy, T. (1972). Structure and stability of vortex rings. Journal of Fluid Mechanics, 51, 15–32.

    Article  Google Scholar 

  33. Maxworthy, T. (1977). Some experimental studies of vortex rings. Journal of Fluid Mechanics, 81, 465–495.

    Article  Google Scholar 

  34. Mohseni, K., & Gharib, M. (1998). A model for universal time scale of vortex ring formation. Physics of Fluids, 10, 2436–2438.

    Article  Google Scholar 

  35. Mohseni, K., Ran, H. Y., & Colonius, T. (2001). Numerical experiments on vortex ring formation. Journal of Fluid Mechanics, 430, 267–282.

    Article  MATH  Google Scholar 

  36. Moore, D. W., & Saffman, P. G. (1973). Axial-flow in laminar trailing vortices. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 333, 491–508.

    Article  MATH  Google Scholar 

  37. Moslemi, A. A., Krueger, P. S. (2010). Propulsive efficiency of a biomorphic pulsed-jet underwater vehicle. Bioinspiration and Biomimetics, 5(3), 036003.

    Google Scholar 

  38. Nitsche, M. (1993) Numerical simulation of axisymmetric vortex sheet roll-up. Vortex flows and related numerical methods. In: Proceedings NATO Advanced Res. Workshop. (eds. Beale, J. T., Collet, G. H. and Hubersou, S.) Kluwer Acad. Publishers.

    Google Scholar 

  39. Nitsche, M., & Krasny, R. (1994). A numerical study of vortex ring formation at the edge of a circular tube. Journal of Fluid Mechanics, 276, 139–161.

    Article  MATH  MathSciNet  Google Scholar 

  40. Norbury, J. (1973). Family of steady vortex rings. Journal of Fluid Mechanics, 57, 417–431.

    Article  MATH  Google Scholar 

  41. O’farrell, C., & Dabiri, J. O. (2010). A Lagrangian approach to identifying vortex pinch-off. Chaos, 20, 017513.

    Article  Google Scholar 

  42. O’farrell, C., & Dabiri, J. O. (2012). Perturbation response and pinch-off of vortex rings and dipoles. Journal of Fluid Mechanics, 704, 280–300.

    Article  MATH  Google Scholar 

  43. Olcay, A. B., & Krueger, P. S. (2008). Measurement of ambient fluid entrainment during laminar vortex ring formation. Experiments in Fluids, 44, 235–247.

    Article  Google Scholar 

  44. Olcay, A. B., & Krueger, P. S. (2010). Momentum evolution of ejected and entrained fluid during laminar vortex ring formation. Theoretical and Computational Fluid Dynamics, 24, 465–482.

    Article  MATH  Google Scholar 

  45. Pawlak, G., Marugan-Cruz, C., Martinez-Bazan, C., & Garcia-Hrdy, P. (2007). Experimental characterization of starting jet dynamics. Fluid Dynamics Research, 39, 711–730.

    Article  MATH  Google Scholar 

  46. Ricou, F. P., & Spalding, D. B. (1961). Measurements of entrainment by axisymmetrical turbulent jets. Journal of Fluid Mechanics, 11, 21–32.

    Article  MATH  Google Scholar 

  47. Rosenfeld, M., Rambod, E., & Gharib, M. (1998). Circulation and formation number of laminar vortex rings. Journal of Fluid Mechanics, 376, 297–318.

    Article  MATH  MathSciNet  Google Scholar 

  48. Ruiz, L. A., Whittlesey, R. W. & Dabiri, J. O. (2011). Vortex-enhanced propulsion. Journal of Fluid Mechanics, 668, 5–32.

    Google Scholar 

  49. Saffman, P. G. (1978). Number of waves on unstable vortex rings. Journal of Fluid Mechanics, 84, 625–639.

    Article  MathSciNet  Google Scholar 

  50. Schram, C., & Riethmuller, M. L. (2001). Vortex ring evolution in an impulsively started jet using digital particle image velocimetry and continuous wavelet analysis. Measurement Science and Technology, 12, 1413–1421.

    Article  Google Scholar 

  51. Shadden, S. C., Dabiri, J. O., & Marsden, J. E. (2006). Lagrangian analysis of fluid transport in empirical flows. Physics of Fluids, 18.

    Google Scholar 

  52. Shadden, S. C., Lekien, F., & Marsden, J. E. (2005). Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows. Physica D: Nonlinear Phenomena, 212, 271–304.

    Article  MATH  MathSciNet  Google Scholar 

  53. Shariff, K., & Leonard, A. (1992). Vortex rings. Annual Review of Fluid Mechanics, 24, 235–279.

    Google Scholar 

  54. Shusser, M., & Gharib, M. (2000). Energy and velocity of a forming vortex ring. Physics of Fluids, 12, 618–621.

    Article  MATH  MathSciNet  Google Scholar 

  55. Shusser, M., Gharib, M., Rosenfeld, M., & Mohseni, K. (2002). On the effect of pipe boundary layer growth on the formation of a laminar vortex ring generated by a piston/cylinder arrangement. Theoretical and computational fluid dynamics, 15, 303–316.

    Article  MATH  Google Scholar 

  56. Weigand, A., & Gharib, M. (1997). On the evolution of laminar vortex rings. Experiments in Fluids, 22, 447–457.

    Article  Google Scholar 

  57. Zhao, W., Frankel, S. H., & Mongeau, L. G. (2000). Effects of trailing jet instability on vortex ring formation. Physics of Fluids, 12, 589–596.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Gao, L., Yu, S.C.M. (2015). Starting Jets and Vortex Ring Pinch-Off. In: New, D., Yu, S. (eds) Vortex Rings and Jets. Fluid Mechanics and Its Applications, vol 111. Springer, Singapore. https://doi.org/10.1007/978-981-287-396-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-287-396-5_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-287-395-8

  • Online ISBN: 978-981-287-396-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics