Skip to main content

Distributed Recovery

  • Chapter
  • First Online:
Compressed Sensing for Distributed Systems

Part of the book series: SpringerBriefs in Electrical and Computer Engineering ((BRIEFSSIGNAL))

  • 1021 Accesses

Abstract

This chapter surveys a few basic algorithms for distributed reconstruction from compressive measurements in a network of nodes, which may be sensors or nodes that collect measurements from different sensors. This estimation problem can be recast into an optimization problem where a convex and separable loss function should be minimized subject to sparsity constraints. The goal of the network is to handle distributed sparse estimation. Clearly, to achieve such a goal, the nodes must share, at least partially, their estimation. A single node typically has limited memory and processing capability; therefore, cooperation is the key to compensate for this lack and achieve satisfactory performance. Cooperation, however, raises the problem of communication among nodes, which is known to be the largest consumer of the limited energy of a node, compared to other functions such as sensing and computation. Particular attention is devoted to energy efficiency, in terms of transmissions and memory requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baron, D., Duarte, M.F., Wakin, M.B., Sarvotham, S., Baraniuk, R.G.: Distributed compressive sensing. arXiv preprint arXiv:0901.3403 (2009)

  2. Forero, P.A., Cano, A., Giannakis, G.B.: Consensus-based distributed support vector machines. J. Mach. Learn. Res. 99, 1663–1707 (2010)

    MathSciNet  Google Scholar 

  3. Chaudhuri, K., Monteleoni, C.: Privacy-preserving logistic regression. In Koller, D., Schuurmans, D., Bengio, Y., Bottou, L. (eds.) NIPS, Curran Associates, Inc. pp. 289–296 (2008)

    Google Scholar 

  4. Krüger, J., Westermann, R.: Linear algebra operators for GPU implementation of numerical algorithms. ACM Trans. Graph. 22(3), 908–916 (2003)

    Article  Google Scholar 

  5. Owens, J.D., Luebke, D., Govindaraju, N., Harris, M., Krüger, J., Lefohn, A., Purcell, T.J.: A survey of general-purpose computation on graphics hardware. Comput. Graph. Forum 26(1), 80–113 (2007)

    Article  Google Scholar 

  6. Sundman, D., Chatterjee, S., Skoglund, M.: A greedy pursuit algorithm for distributed compressed sensing. In: IEEE ICASSP, pp. 2729–2732 (2012)

    Google Scholar 

  7. Mota, J., Xavier, J., Aguiar, P., Puschel, M.: Basis pursuit in sensor networks. In: IEEE ICASSP, pp. 2916–2919 (2011)

    Google Scholar 

  8. Mota, J., Xavier, J., Aguiar, P., Puschel, M.: Distributed basis pursuit. IEEE Trans. Signal Proc. 60(4), 1942–1956 (2012)

    Article  MathSciNet  Google Scholar 

  9. Mateos, G., Bazerque, J.A., Giannakis, G.B.: Distributed sparse linear regression. IEEE Trans. Signal Proc. 58(10), 5262–5276 (2010)

    Article  MathSciNet  Google Scholar 

  10. Nedić, A., Ozdaglar, A., Parrillo, P.A.: Constrained consensus and optimization in multi-agent networks. IEEE Trans. Autom. Control 55, 922–938 (2010)

    Article  Google Scholar 

  11. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2011)

    Article  Google Scholar 

  12. Ravazzi, C., Fosson, S.M., Magli, E.: Distributed soft thresholding for sparse signal recovery. In: 2013 IEEE Global Communications Conference (GLOBECOM), pp. 3429–3434 (2013)

    Google Scholar 

  13. Ravazzi, C., Fosson, S.M., Magli, E.: Energy-saving gossip algorithm for compressed sensing in multi-agent systems. In: 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, pp. 5097–5101 (2014)

    Google Scholar 

  14. Ravazzi, C., Fosson, S.M., Magli, E.: Randomized algorithms for distributed nonlinear optimization under sparsity constraints. IEEE Trans. Signal Process. 1–14 (2014)

    Google Scholar 

  15. Ravazzi, C., Fosson, S., Magli, E.: Distributed iterative thresholding for \(ell _{0}/ell _{1}\)—regularized linear inverse problems. IEEE Trans. Inf. Theory 61(4), 2081–2100 (2015)

    Article  Google Scholar 

  16. Lu, J., Tang, C.Y., Regier, P.R., Bow, T.D.: Gossip algorithms for convex consensus optimization over networks. IEEE Trans. Autom. Control 56(12), 2917–2923 (2011)

    Article  MathSciNet  Google Scholar 

  17. Sundhar Ram, S., Nedić, A., Veeravalli, V.V.: Distributed stochastic subgradient projection algorithms for convex optimization. J. Optim. Theory Appl. 516–545 (2010)

    Google Scholar 

  18. Sundhar Ram, S., Nedić, A., Veeravalli, V.V.: Asynchronous gossip algorithm for stochastic optimization: Constant stepsize analysis. Recent Advances in Optimization and its Applications in Engineering. Springer, Berlin, pp. 51–60 (2010)

    Google Scholar 

  19. Dimakis, A.G., Kar, S., Moura, J.M.F., Rabbat, M.G., Scaglione, A.: Gossip algorithms for distributed signal processing. Proc. IEEE 98(11), 1847–1864 (2010)

    Article  Google Scholar 

  20. Patterson, S., Eldar, Y., Keidar, I.: Distributed compressed sensing for static and time-varying networks. IEEE Trans. Signal Process. 62(19), 4931–4946 (2014)

    Article  MathSciNet  Google Scholar 

  21. Candès, E.J.: The restricted isometry property and its implications for compressed sensing. Compte Rendus de l’Academie des Sciences. Paris, France, ser. I 346, pp. 589–592 (2008)

    Google Scholar 

  22. Olfati-Saber, R., Fax, J.A., Murray, R.M.: Consensus and cooperation in networked multi-agent systems. In: Proceedings of the IEEE (2007)

    Google Scholar 

  23. Tibshirani, R.J.: The Lasso problem and uniqueness. Electron. J. Stat. 7, 1456–1490 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  24. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, New York (2004)

    Book  MATH  Google Scholar 

  25. Sundhar Ram, S., Nedić, A., Veeravalli, V.V.: Distributed subgradient projection algorithm for convex optimization. In: Proceedings of IEEE ICASSP, pp. 3653–3656 (2009)

    Google Scholar 

  26. Nedic, A., Ozdaglar, A.: Distributed subgradient methods for multi-agent optimization. IEEE Trans. Autom. Control 54(1), 48–61 (2009)

    Article  MathSciNet  Google Scholar 

  27. Lobel, I., Ozdaglar, A.: Distributed subgradient methods for convex optimization over random networks. IEEE Trans. Autom. Control 56(6), 1291–1306 (2011)

    Article  MathSciNet  Google Scholar 

  28. Tsitsiklis, J.N.: Problems in decentralized decision making and computation. PhD thesis, Department of EECS, MIT (1984)

    Google Scholar 

  29. Tsitsiklis, J.N., Bertsekas, D.P., Athans, M.: Distributed asynchronous deterministic and stochastic gradient optimization algorithms. IEEE Trans. Autom. Control 31(9), 803–812 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  30. Wei, E., Ozdaglar, A.: Distributed alternating direction method of multipliers. In: IEEE 51st Annual Conference on Decision and Control (CDC), pp. 5445–5450 (2012)

    Google Scholar 

  31. Mota, J., Xavier, J., Aguiar, P., Puschel, M.: D-ADMM: a communication-efficient distributed algorithm for separable optimization. IEEE Trans. Signal Proc. 61(10), 2718–2723 (2013)

    Article  MathSciNet  Google Scholar 

  32. Moallemi, C., Van Roy, B.: Consensus propagation. IEEE Trans. Inf. Theory 52(11), 4753–4766

    Google Scholar 

  33. Lange, K., Hunter, D., Yang, I.: Optimization transfer using surrogate objective functions. J. Comput. Graph. Stat. 9, 1–20 (2006)

    MathSciNet  Google Scholar 

  34. Lange, K.: Optimization. Springer, New York (2004)

    Google Scholar 

  35. Candès, E.J., Romberg, J.K., Tao, T.: Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure. Appl. Math. 59(8), 1207–1223 (2006)

    Article  MATH  Google Scholar 

  36. Xiao, L., Boyd, S., Lall, S.: Distributed average consensus with time-varying metropolis weights. http://web.stanford.edu/~boyd/papers/avg_metropolis.html (2006)

  37. Penrose, M.: Random Geometric Graphs (Oxford Studies in Probability). Oxford University Press, Oxford (July 2003)

    Google Scholar 

  38. van den Berg, E., Friedlander, M., Hennenfent, G., Herrmann, F., Saab, R., Yılmaz, Ö.: Sparco: A testing framework for sparse reconstruction. Technical Report TR-2007-20, Department Computer Science, University of British Columbia, Vancouver (2007)

    Google Scholar 

  39. Fosson, S.M., Matamoros, J., Antón-Haro, C., Magli, E.: Distributed support detection of jointly sparse signals. In: 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6434–6438 (May 2014)

    Google Scholar 

  40. Matamoros, J., Fosson, S.M., Magli, E., Antón-Haro, C.: Distributed ADMM for in-network reconstruction of sparse signals with innovations. In: 2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP), pp. 429–433 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giulio Coluccia .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Coluccia, G., Ravazzi, C., Magli, E. (2015). Distributed Recovery. In: Compressed Sensing for Distributed Systems. SpringerBriefs in Electrical and Computer Engineering(). Springer, Singapore. https://doi.org/10.1007/978-981-287-390-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-287-390-3_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-287-389-7

  • Online ISBN: 978-981-287-390-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics