Skip to main content

Synthesis of Magnesium-Based Biomaterials

  • Chapter
  • First Online:

Part of the book series: SpringerBriefs in Materials ((BRIEFSMATERIALS))

Abstract

Owing to the advantages of magnesium as a biomaterial, study on synthesis of magnesium materials is of prime importance. This chapter introduces potential synthesis techniques for synthesizing both impermeable and porous magnesium-based biomaterials. Primary processing of magnesium-based materials (alloys and composites) can be classified into liquid-state and solid-state processes. The advantages and disadvantages of synthesis techniques are presented and discussed. Even though there are many synthesizing methodologies for magnesium-based alloys and composites, very few were adopted for synthesizing biomaterials, especially porous magnesium materials. Recent technology advancements enable the researchers and engineers to synthesize homogeneous magnesium alloys and composites utilizing high-purity raw materials and continuously strive to achieve repeatability of material properties at all times.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Y. Wan, G. Xiong, H. Luo, F. He, Y. Huang, X. Zhou, Preparation and characterization of a new biomedical magnesium–calcium alloy. Mater. Des. 29, 2034–2037 (2008)

    Article  Google Scholar 

  2. X. Gu, X. Wang, N. Li, L. Li, Y. Zheng, X. Miao, Microstructure and characteristics of the metal–ceramic composite (MgCa–HA/TCP) fabricated by liquid metal infiltration. J. Biomed. Mater. Res. B Appl. Biomater. 99, 127–134 (2011)

    Article  Google Scholar 

  3. H.Z. Ye, X.Y. Liu, Review of recent studies in magnesium matrix composites. J. Mater. Sci. 39, 6153–6171 (2004)

    Article  Google Scholar 

  4. T. Lei, W. Tang, S.-H. Cai, F.-F. Feng, N.-F. Li, On the corrosion behaviour of newly developed biodegradable Mg-based metal matrix composites produced by in situ reaction. Corros. Sci. 54, 270–277 (2012)

    Article  Google Scholar 

  5. B. Pucun, D. Taishang, H. Xiaohu, Z. Chunwang, X. Yongming, Microstructure and mechanical properties of spray-deposited Mg–12.55 Al–3.33 Zn–0.58 Ca–1Nd alloy. Mater. Charact. 61, 756–760 (2010)

    Article  Google Scholar 

  6. K. Chang, M.-L. Guo, R. Kong, C.Y. Tsao, J. Huang, J. Jang, Mg–Cu–Gd layered composite plate synthesized via the spray forming process. Mater. Sci. Eng. A 477, 58–62 (2008)

    Article  Google Scholar 

  7. C. Chen, C.Y. Tsao, Spray forming of silicon added AZ91 magnesium alloy and its workability. Mater. Sci. Eng. A 383, 21–29 (2004)

    Article  Google Scholar 

  8. M. Saravanan, B. Sivaiah, A. Srivastava, A. Dhar, Ultrafine grain structure features in spray-formed AZ31 magnesium alloy. Mater. Des. 60, 21–25 (2014)

    Article  Google Scholar 

  9. M. Gupta, M. Lai, C. Soo, Processing-microstructure-mechanical properties of an Al-Cu/SiC metal matrix composite synthesized using disintegrated melt deposition technique. Mater. Res. Bull. 30, 1525–1534 (1995)

    Article  Google Scholar 

  10. J. Subramanian, K.C. Guan, J. Kuma, M. Gupta, Feasibility study on utilizing carbon dioxide during the processing of Mg–Al alloys. J. Mater. Process. Technol. 211, 1416–1422 (2011)

    Article  Google Scholar 

  11. S. Sankaranarayanan, S. Jayalakshmi, M. Gupta, Effect of addition of mutually soluble and insoluble metallic elements on the microstructure, tensile and compressive properties of pure magnesium. Mater. Sci. Eng. A 530, 149–160 (2011)

    Article  Google Scholar 

  12. M. Shanthi, M. Gupta, A. Jarfors, M. Tan, Synthesis, characterization and mechanical properties of nano alumina particulate reinforced magnesium based bulk metallic glass composites. Mater. Sci. Eng. A 528, 6045–6050 (2011)

    Article  Google Scholar 

  13. M. Gupta, M. Lai, D. Saravanaranganathan, Synthesis, microstructure and properties characterization of disintegrated melt deposited Mg/SiC composites. J. Mater. Sci. 35, 2155–2165 (2000)

    Article  Google Scholar 

  14. S. Hassan, M. Gupta, Development of ductile magnesium composite materials using titanium as reinforcement. J. Alloy. Compd. 345, 246–251 (2002)

    Article  Google Scholar 

  15. K. Ho, M. Gupta, T. Srivatsan, The mechanical behavior of magnesium alloy AZ91 reinforced with fine copper particulates. Mater. Sci. Eng. A 369, 302–308 (2004)

    Article  Google Scholar 

  16. Q. Nguyen, M. Gupta, Enhancing compressive response of AZ31B magnesium alloy using alumina nanoparticulates. Compos. Sci. Technol. 68, 2185–2192 (2008)

    Article  Google Scholar 

  17. M. Paramsothy, S. Hassan, N. Srikanth, M. Gupta, Enhancing tensile/compressive response of magnesium alloy AZ31 by integrating with Al2O3 nanoparticles. Mater. Sci. Eng. A 527, 162–168 (2009)

    Article  Google Scholar 

  18. G.K. Meenashisundaram, M. Gupta, Low volume fraction nano-titanium particulates for improving the mechanical response of pure magnesium. J. Alloy. Compounds 593, 176–183 (2014)

    Article  Google Scholar 

  19. G.K. Meenashisundaram, S. Sankaranarayanan, M. Gupta, Enhancing overall tensile and compressive response of pure Mg using nano-TiB2 particulates. Mater. Charact. 94, 178–188 (2014)

    Article  Google Scholar 

  20. G.K. Meenashisundaram, M.H. Nai, A. Almajid, M. Gupta, Development of high performance Mg–TiO2 nanocomposites targeting for biomedical/structural applications. Mater. Des. (2014)

    Google Scholar 

  21. R.M. German, Powder metallurgy science. Metal Powder Ind. Fed. 279 (1984)

    Google Scholar 

  22. J.P. Schaffer, A. Saxena, S.D. Antolovich, T. Sanders, S.B. Warner, The Science and Design of Engineering Materials (Irwin Chicago, Chicago, 1995)

    Google Scholar 

  23. M. Gupta, W. Wong, Enhancing overall mechanical performance of metallic materials using two-directional microwave assisted rapid sintering. Scripta Mater. 52, 479–483 (2005)

    Article  Google Scholar 

  24. S. Hashmi, Comprehensive Materials Processing (Newnes, London, 2014)

    Google Scholar 

  25. C. Ng, M. Savalani, H. Man, I. Gibson, Layer manufacturing of magnesium and its alloy structures for future applications. Virtual Phys. Prototyping 5, 13–19 (2010)

    Article  Google Scholar 

  26. M. Savalani, L. Hao, R.A. Harris, Evaluation of CO2 and Nd: YAG lasers for the selective laser sintering of HAPEX®. Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 220, 171–182 (2006)

    Article  Google Scholar 

  27. C. Ng, M. Savalani, M. Lau, H. Man, Microstructure and mechanical properties of selective laser melted magnesium. Appl. Surf. Sci. 257, 7447–7454 (2011)

    Article  Google Scholar 

  28. H. Li, Q. Peng, X. Li, K. Li, Z. Han, D. Fang, Microstructures, mechanical and cytocompatibility of degradable Mg–Zn based orthopedic biomaterials. Mater. Des. 58, 43–51 (2014)

    Article  Google Scholar 

  29. J. Umeda, M. Kawakami, K. Kondoh, E.-S. Ayman, H. Imai, Microstructural and mechanical properties of titanium particulate reinforced magnesium composite materials. Mater. Chem. Phys. 123, 649–657 (2010)

    Article  Google Scholar 

  30. G.E. Dieter, D. Bacon, Mechanical Metallurgy (McGraw-Hill, New York, 1986)

    Google Scholar 

  31. Z. Li, X. Gu, S. Lou, Y. Zheng, The development of binary Mg–Ca alloys for use as biodegradable materials within bone. Biomaterials 29, 1329–1344 (2008)

    Article  Google Scholar 

  32. L.D. Zardiackas, D.E. Parsell, L.D. Dillon, D.W. Mitchell, L.A. Nunnery, R. Poggie, Structure, metallurgy, and mechanical properties of a porous tantalum foam. J. Biomed. Mater. Res. 58, 180–187 (2001)

    Article  Google Scholar 

  33. L.-P. Lefebvre, J. Banhart, D. Dunand, Porous metals and metallic foams: current status and recent developments. Adv. Eng. Mater. 10, 775–787 (2008)

    Article  Google Scholar 

  34. C. Wen, M. Mabuchi, Y. Yamada, K. Shimojima, Y. Chino, T. Asahina, Processing of biocompatible porous Ti and Mg. Scripta Mater. 45, 1147–1153 (2001)

    Article  Google Scholar 

  35. J. Reifenrath, C. Palm, P. Mueller, H. Hauser, H. Crostack, J. Nellesen, F. Bach, D. Besdo, M. Rudert, F. Witte, in 51st Annual Meeting of the Orthopaedic Research Society, ed. by O.R. Society. Subchondral plate reconstruction by fast degrading magnesium scaffolds influence cartilage repair in osteochondral defects (Orthopaedic Research Society, 2005)

    Google Scholar 

  36. C. Wen, Y. Yamada, K. Shimojima, Y. Chino, H. Hosokawa, M. Mabuchi, Compressibility of porous magnesium foam: dependency on porosity and pore size. Mater. Lett. 58, 357–360 (2004)

    Article  Google Scholar 

  37. F. Witte, H. Ulrich, M. Rudert, E. Willbold, Biodegradable magnesium scaffolds: Part 1: appropriate inflammatory response. J. Biomed. Mater. Res. Part A 81, 748–756 (2007)

    Article  Google Scholar 

  38. L. Tan, M. Gong, F. Zheng, B. Zhang, K. Yang, Study on compression behavior of porous magnesium used as bone tissue engineering scaffolds. Biomed. Mater. 4, 015016 (2009)

    Article  Google Scholar 

  39. X. Gu, W. Zhou, Y. Zheng, Y. Liu, Y. Li, Degradation and cytotoxicity of lotus-type porous pure magnesium as potential tissue engineering scaffold material. Mater. Lett. 64, 1871–1874 (2010)

    Article  Google Scholar 

  40. Y. Yamada, K. Shimojima, Y. Sakaguchi, M. Mabuchi, M. Nakamura, T. Asahina, T. Mukai, H. Kanahashi, K. Higashi, Processing of cellular magnesium materials. Adv. Eng. Mater. 2, 184–187 (2000)

    Article  Google Scholar 

  41. M.P. Staiger, A.M. Pietak, J. Huadmai, G. Dias, Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials 27, 1728–1734 (2006)

    Article  Google Scholar 

  42. G. Song, A. Atrens, Understanding magnesium corrosion—a framework for improved alloy performance. Adv. Eng. Mater. 5, 837–858 (2003)

    Article  Google Scholar 

  43. J. Čapek, D. Vojtěch, Effect of sintering conditions on the microstructural and mechanical characteristics of porous magnesium materials prepared by powder metallurgy. Mater. Sci. Eng. C 35, 21–28 (2014)

    Article  Google Scholar 

  44. M.-H. Kang, H.-D. Jung, S.-W. Kim, S.-M. Lee, H.-E. Kim, Y. Estrin, Y.-H. Koh, Production and bio-corrosion resistance of porous magnesium with hydroxyapatite coating for biomedical applications. Mater. Lett. 108, 122–124 (2013)

    Article  Google Scholar 

  45. J. Čapek, D. Vojtěch, Properties of porous magnesium prepared by powder metallurgy. Mater. Sci. Eng. C 33, 564–569 (2013)

    Article  Google Scholar 

  46. H. Cay, H. Xu, Q. Li, Mechanical behavior of porous magnesium/alumina composites with high strength and low density. Mater. Sci. Eng. A 574, 137–142 (2013)

    Article  Google Scholar 

  47. G.L. Hao, F.S. Han, W.D. Li, Processing and mechanical properties of magnesium foams. J. Porous Mater. 16, 251–256 (2009)

    Article  Google Scholar 

  48. F. Witte, N. Hort, C. Vogt, S. Cohen, K.U. Kainer, R. Willumeit, F. Feyerabend, Degradable biomaterials based on magnesium corrosion. Curr. Opin. Solid State Mater. Sci. 12, 63–72 (2008)

    Article  Google Scholar 

  49. P.M. Schaber, J. Colson, S. Higgins, D. Thielen, B. Anspach, J. Brauer, Thermal decomposition (pyrolysis) of urea in an open reaction vessel. Thermochim. Acta 424, 131–142 (2004)

    Article  Google Scholar 

  50. M.M. Avedesian, H. Baker, Magnesium and Magnesium Alloys (ASM international, United States, 1999)

    Google Scholar 

  51. H. Kaufmann, P.J. Uggowitzer, Fundamentals of the new rheocasting process for magnesium alloys. Adv. Eng. Mater. 3, 963–967 (2001)

    Article  Google Scholar 

  52. Z. Fan, Development of the rheo-diecasting process for magnesium alloys. Mater. Sci. Eng. A 413, 72–78 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoj Gupta .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Gupta, M., Meenashisundaram, G.K. (2015). Synthesis of Magnesium-Based Biomaterials. In: Insight into Designing Biocompatible Magnesium Alloys and Composites. SpringerBriefs in Materials. Springer, Singapore. https://doi.org/10.1007/978-981-287-372-9_2

Download citation

Publish with us

Policies and ethics