Skip to main content

Electromigration-Induced Plasticity in Cu Interconnects: The Texture Dependence

  • Chapter
  • First Online:
  • 590 Accesses

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

Abstract

The discussion of the peculiarities of electromigration in Cu interconnects is continued in this chapter. It is shown that the interconnect texture is an important factor, governing the plastic response of Cu grains to the electrical current. The degree of the plastic response is proportional with the availability of 〈112〉 direction in Cu crystals along the direction of the current. Hence, (111) out-of-plane orientation of Cu grains increases the plastic effect of electromigration, while the presence of the grains with a different orientation could weaken it.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Vanasupa L, Joo YC, Besser PR et al (1999) Texture analysis of damascene-fabricated Cu lines by x-ray diffraction and electron backscatter diffraction and its impact on electromigration performance. J Appl Phys 85:2583–2590

    Article  Google Scholar 

  2. Budiman AS, Tamura N, Valek BC et al (2006) Crystal plasticity in Cu damascene interconnect lines undergoing electromigration as revealed by synchrotron x-ray microdiffraction. Appl Phys Lett 88:233515

    Article  Google Scholar 

  3. Valek BC, Bravman JC, Tamura N et al (2002) Electromigration-induced plastic deformation in passivated metal lines. Appl Phys Lett 81:4168–4170

    Article  Google Scholar 

  4. Valek BC, Tamura N, Spolenak R et al (2003) Early stage of plastic deformation in thin films undergoing electromigration. J Appl Phys 94:3757–3761

    Article  Google Scholar 

  5. Budiman AS, Tamura N, Valek BC et al (2004) Materials, technology and reliability for advanced interconnects and low-k dielectrics. Mat Res Soc Proc 812:345–350

    Article  Google Scholar 

  6. Budiman AS, Tamura N, Valek BC et al (2006) Electromigration-induced plastic deformation in Cu Damascene interconnect lines as revealed by synchrotron x-ray microdiffraction. Mat Res Soc Proc 0914-F06-01–0914-F06-05

    Google Scholar 

  7. Besser P, Zschech E, Blum W et al (2001) Microstructural characterization of inlaid copper interconnect lines. J Elec Matls 30:320–330

    Article  Google Scholar 

  8. Lingk C, Gross ME, Brown WL (2000) Texture development of blanket electroplated copper films. J Appl Phys 87:2232–2236

    Article  Google Scholar 

  9. Harper JM, Colgan EG, Hu CK et al (1994) Materials issues in copper interconnections. Mat Res Soc Bull 23:23–29

    Google Scholar 

  10. Besser PR, Sanchez JE, Field DP (1997) Proceedings of the advanced metallization and interconnect systems for ULSI applications in 1996, vol 89. Materials Research Society, Warrendale, PA

    Google Scholar 

  11. Lingk C, Gross ME, Brown WL, Siegrist T, Coleman E, Lai WY-C, Miner JF, Ritzdorf T, Turner J, Gibbons J, Klawuhn E, Wu G, Zhang F (1999) Advanced metallization conference in 1998 (AMC 1998), vol 73. Materials Research Society, Warrendale, PA

    Google Scholar 

  12. Lingk C, Gross ME, Brown WL (1999) X-ray diffraction pole figure evidence for (111) sidewall texture of electroplated Cu in submicron damascene trenches. Appl Phys Lett 74:682–684

    Article  Google Scholar 

  13. Besser PR, Sanchez JE, Field DP, Pramanick S, Sahota K (1997) Advanced metallization for ULSI applications. Mat Res Soc Proc 473:217

    Google Scholar 

  14. Besser PR, Joo YC, Winter D et al (1999) Mechanical stresses in aluminum and copper interconnect lines for 0.18 µm logic technologies. Mat Res Soc Proc 563:189

    Google Scholar 

  15. Besser PR (1999) Stress-induced phenomena in metallization. In: AIP conference proceedings, vol 491, p 229

    Google Scholar 

  16. Zschech E, Besser PR (2000) Microstructure characterization of metal interconnects and barrier layers: status and future. In: Proceedings of the international interconnect technology conference, vol 233. p 235

    Google Scholar 

  17. Venkatasen S, Gelatos A, Misra V, Smith B, Islam R, Cope J, Wilson B, Tuttle D, Cardwell R, Anderson S, Angyal M, Bajaj R, Capasso C, Crabtree P, Das S, Farkas J, Fillipiak S, Fiordalice B, Freeman M, Gilbert P, Herrick M, Jain A, Kawasaki H, King C, Klein J, Lii T, Reid K, Saaranen T, Simpson C, Sparks T, Tsui P, Venkatraman R, Watts D, Wietzman E, Woodruff R, Yang I, Bhat N, Hamilton G, Yu Y (1997) In: IEEE International Electron Device Meeting Digest, vol 769. IEEE, Piscataway, NY)

    Google Scholar 

  18. Licata T, Okazaki M, Ronay M et al (1995) Dual damascene Al wiring for 256M DRAM. In: Proceedings of the VLSI multilevel interconnection conference

    Google Scholar 

  19. Sanchez JE, Besser PR (1998) Proceedings of the international interconnect technology conference, vol 233. IEEE, Piscataway, NY

    Google Scholar 

  20. Paik JM, Park KC, Joo YC (2004) Relationship between grain structures and texture of damascene Cu lines. J Elec Matls 33:48–52

    Article  Google Scholar 

  21. Diebold A, Goodall RK (1999) Interconnect metrology roadmap: status and future. In: Proceedings of the international interconnect technology conference, San Francisco, 24–26 May 1999

    Google Scholar 

  22. Rhee SH, Du Y, Ho PS (2003) Thermal stress characteristics of Cu/oxide and Cu/low-k submicron interconnect structures. J Appl Phys 92:3926–3833

    Google Scholar 

  23. Paik JM, Park H, Joo YC et al (2005) Effect of dielectric materials on stress-induced damage modes in damascene Cu lines. J Appl Phys 97:104513

    Article  Google Scholar 

  24. Fayolle M, Passemard G, Assous M et al (2002) Integration of copper with an organic low-k dielectric in 0.12-μm node interconnect. Micoelectron Eng 60:119–124

    Article  Google Scholar 

  25. Filippi RG et al (2004) Thermal cycle reliability of stacked via structures with copper metallization and an organic low-k dielectric. In: 42nd annual IEEE international reliability physics symposium proceedings, pp 61–67

    Google Scholar 

  26. Shen YL (2006) Effects of dielectric thermal expansion and elastic modulus on the stress and deformation fields in copper interconnects. Mat Res Soc Proc 0914-F04-01–0914-F04-10

    Google Scholar 

  27. Tamura N, MacDowell AA, Spolenak BC et al (2003) Scanning x-ray microdiffraction with submicrometer white beam for strain/stress and orientation mapping in thin films. J Sync Rad 10:137–143

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arief Suriadi Budiman .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Budiman, A.S. (2015). Electromigration-Induced Plasticity in Cu Interconnects: The Texture Dependence. In: Probing Crystal Plasticity at the Nanoscales. SpringerBriefs in Applied Sciences and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-287-335-4_4

Download citation

Publish with us

Policies and ethics