Skip to main content

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

  • 588 Accesses

Abstract

Small scale plasticity plays an important role in the modern electronics. The µSXRD technique offers the unique capability to study the plastic evolution of the grains in the interconnect lines during electromigration (in situ) at the submicron resolution. These experiments provide useful insights and may also provide important practical implications, as will be discussed in greater detail, for the fundamental understanding of the electromigration degradation mechanisms, as well as for the industry critical assessment methodologies of electromigration device lifetime. The technique can also be used to provide the key tool to probe the plastic behavior of the materials at small scales under the mechanical load. Understanding and controlling plasticity and the mechanical properties of materials on this scale could thus lead to new and more robust nanomechanical structures and devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Valek BC, Bravman JC, Tamura N et al (2002) Electromigration-induced plastic deformation in passivated metal lines. Appl Phys Lett 81:4168–4170

    Article  Google Scholar 

  2. Arzt E (1998) Size effects in materials due to microstructural and dimensional constraints: a comparative review. Acta Mater 46:5611–5626

    Article  Google Scholar 

  3. Keller RM, Baker SP, Arzt E (1998) Quantitative analysis of strengthening mechanisms in thin Cu films: effects of film thickness, grain size, and passivation. J Mater Res 13:1307–1317

    Article  Google Scholar 

  4. Yu YW, Spaepen F (2003) The yield strength of thin copper films on Kapton. J Appl Phys 95:2991–2997

    Article  Google Scholar 

  5. Kraft O, Hommel M (2001) Deformation behavior of thin copper films on deformable substrates. Acta Mater 49:3935–3947

    Article  Google Scholar 

  6. Huang H, Spaepen F (2000) Tensile testing of free-standing Cu, Ag and Al thin films and Ag/Cu multilayers. Acta Mater 48:3261–3269

    Article  Google Scholar 

  7. Nix WD (1989) Mechanical properties of thin films. Metall Trans A 20:2217–2245

    Article  Google Scholar 

  8. Nix WD (1998) Yielding and strain hardening of thin metal films on substrates. Sci Mater 39:545–554

    Google Scholar 

  9. von Blanckenhagen B, Gumbsch P, Arzt E (2003) Dislocation sources and the flow stress of polycrystalline thin metal films. Phil Mag Lett 83:1–8

    Article  Google Scholar 

  10. Arzt E, Dehm G, Gumbsch P et al (2001) Interface controlled plasticity in metals: dispersion hardening and thin film deformation. Prog Mater Sci 46:283–307

    Article  Google Scholar 

  11. Nix WD, Leung OS (2001) Thin films: plasticity. In: Buschow KHJ et al (eds) Encyclopedia of materials: science and technology. Elsevier, Oxford, p 9262

    Chapter  Google Scholar 

  12. Han SM, Philips MA, Nix WD (2009) Study of strain softening behavior of Al-Al3 Sc multilayers using microcompression testing. Acta Mat 57:4473-4490

    Google Scholar 

  13. Pant P, Schwartz KW, Baker SP (2003) Dislocation interactions in thin FCC metal films. Acta Mater 51:3243–3258

    Article  Google Scholar 

  14. Nix WD, Greer JR, Feng G (2007) Deformation at the nanometer and micrometer length scales: effects of strain gradients and dislocation starvation. Thin Solid Films 515:3152–3157

    Article  Google Scholar 

  15. Stelmashenko NA, Walls MG, Brown LM et al (1993) Microindentations on W and Mo oriented single crystals: an STM study. Acta Metall Mater 41:2855–2865

    Article  Google Scholar 

  16. De Guzman MS, Neubauer G, Flinn P et al (1993) The role of indentation depth on the measured hardness of materials. Mater Res Soc Proc 308:613

    Article  Google Scholar 

  17. Ma Q, Clarke DR (1995) Size dependent hardness of silver single crystals. J Mat Res 10:853–863

    Article  Google Scholar 

  18. Poole WJ, Ashby MF, Fleck NA (1996) Micro-hardness of annealed and work-hardened copper polycrystals. Scripta Mat 34:559–564

    Article  Google Scholar 

  19. Nix WD, Gao H (1998) Micro-hardness of annealed and work-hardened copper polycrystals. J Mech Phys Solids 46:411–425

    Article  Google Scholar 

  20. Gao H, Huang Y, Nix WD (1999) Modeling plasticity at the micrometer scale. Naturwissenschaftler 86:507

    Google Scholar 

  21. Gao H, Huang WD, Nix JW et al (1999) Mechanism-based strain gradient plasticity—I. Theory. J Mech Phys Solids 47:1239–1263

    Article  Google Scholar 

  22. Huang Y, Chen JY, Guo TF et al (1999) Analytic and numerical studies on mode I and mode II fracture in elastic-plastic materials with strain gradient effects. Int J Fract 100:1–27

    Article  Google Scholar 

  23. Huang Y, Gao H, Nix WD et al (2000) Mechanism-based strain gradient plasticity—II. Analysis. J Mech Phys Solids 48:99–128

    Article  Google Scholar 

  24. Huang Y, Xue Z, Gao H et al (2000) A study of microindentation hardness tests by mechanism-based strain gradient plasticity. J Mater Res 15:1786–1796

    Article  Google Scholar 

  25. Tymiak NI, Kramer DE, Bahr DF et al (2001) Plastic strain and strain gradients at very small indentation depths. Acta Mater 49:1021–1034

    Article  Google Scholar 

  26. Swadener JG, George EP, Pharr GM (2002) The correlation of the indentation size effect measured with indenters of various shapes. J Mech Phys Solids 50:681–694

    Article  Google Scholar 

  27. Durst K, Backes B, Goken M (2005) Indentation size effect in metallic materials: correcting for the size of the plastic zone. Scripta Mat 52:1093–1097

    Article  Google Scholar 

  28. Durst K, Backes B, Franke O et al (2006) Indentation size effect in metallic materials: Modeling strength from pop-into macroscopic hardness using geometrically necessary dislocations. Acta Mat 54:2547–2555

    Article  Google Scholar 

  29. Uchic MD, Dimiduk DM, Florando JN et al (2004) Sample dimensions influence strength and crystal plasticity. Science 305:986–989

    Article  Google Scholar 

  30. Greer JR, Oliver WC, Nix WD (2005) Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients. Acta Mater 53:1821–1830

    Article  Google Scholar 

  31. Greer JR, Nix WD (2006) Nanoscale gold pillars strengthened through dislocation starvation. Phys Rev B 73:245410

    Article  Google Scholar 

  32. Tamura N, MacDowell AA, Spolenak BC et al (2003) Scanning X-ray microdiffraction with submicrometer white beam for strain/stress and orientation mapping in thin films. J Synchrotron Rad 10:137–143

    Article  Google Scholar 

  33. Valek BC (2003) X-ray microdiffraction studies of mechanical behavior and electromigration in thin film structures. Dissertation, Stanford University

    Google Scholar 

  34. Budiman AS, Tamura N, Valek BC et al (2006) Crystal plasticity in Cu damascene interconnect lines undergoing electromigration as revealed by synchrotron X-ray microdiffraction. Appl Phys Lett 88:233515

    Article  Google Scholar 

  35. Lloyd JF (1999) Electromigration in integrated circuit conductors. J Phys D 32:R109–R118

    Article  Google Scholar 

  36. Blech IA (1976) Electromigration in thin aluminum films on titanium nitride. J Appl Phys 47:1203–1208

    Article  Google Scholar 

  37. Blech IA, Herring C (1976) Stress generation by electromigration. Appl Phys Lett 29:131–133

    Article  Google Scholar 

  38. Black JR (1969) Electromigration—a brief survey and some recent results. IEEE Trans Electr 16:338–347

    Article  Google Scholar 

  39. Blech IA (1998) Diffusional back flows during electromigration. Acta Mater 46:3717–3723

    Article  Google Scholar 

  40. Hu CK, Reynolds S (1997) CVD Cu interconnections and electromigration. Electrochem Soc Proc 97:1514

    Google Scholar 

  41. Joo YC, Thompson CV (1994) Analytic model for the grain structures of near-bamboo interconnects. J Appl Phys 76:7339–7346

    Article  Google Scholar 

  42. Thompson CV, Lloyd JR (1993) Electromigration and IC interconnects. Mater Res Bull 18:19–25

    Google Scholar 

  43. Hu CK, Small MB, Kaufman F et al (1990) Copper-polyimide wiring technology for VLSI circuits. Mat Res Soc Symp Proc VLSI 369–373

    Google Scholar 

  44. Brown AM, Ashby MF (1980) Correlations for diffusion constants. Acta Metall 28:1085–1101

    Article  Google Scholar 

  45. Hu CK, Lee KY, Gignac L et al (1997) Electromigration in 0.25 μm wide Cu line on W. Thin Solid Films 308–309:443–447

    Article  Google Scholar 

  46. Hu CK, Rosenberg R, Lee KY (1999) Electromigration path in Cu thin-film lines. Appl Phys Lett 74:2945–2947

    Article  Google Scholar 

  47. Korhonen MA, Borgesen P, Tu KN et al (1993) Stress evolution due to electromigration in confined metal lines. J Appl Phys 73:3790–3799

    Article  Google Scholar 

  48. Gleixner RJ, Nix WD (1998) Effect of “bamboo” grain boundaries on the maximum electromigration-induced stress in microelectronic interconnect lines. J Appl Phys 83:3595–3599

    Article  Google Scholar 

  49. Surh MP (1999) Threshold stress behavior in thin film electromigration. J Appl Phys 85:8145–8154

    Article  Google Scholar 

  50. Basinski SJ, Basinski ZS (1979) Plastic deformation and work hardening. In: Nabarro FRN (ed) Dislocations of solids, vol 4: Dislocations in metallurgy. North-Holland Publishing Company, Oxford, p 261

    Google Scholar 

  51. Nabarro FRN, Basinski ZS, Holt DB (1964) The plasticity of pure single crystals. Adv Phys 13:193–323

    Article  Google Scholar 

  52. Basinski ZS, Basinski SJ (1964) Dislocation distributions in deformed copper single crystals. Phil Mag 9:51–80

    Article  Google Scholar 

  53. Basinski ZS (1974) Forest hardening in face centred cubic metals. Scripta Metall 8:1301–1308

    Article  Google Scholar 

  54. Lilleodden ET (2001) Indentation-induced plasticity of thin metal films. Dissertation, Stanford University

    Google Scholar 

  55. Feng G (2005) Dissertation, Stanford University

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arief Suriadi Budiman .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Budiman, A.S. (2015). Introduction. In: Probing Crystal Plasticity at the Nanoscales. SpringerBriefs in Applied Sciences and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-287-335-4_1

Download citation

Publish with us

Policies and ethics