Skip to main content

Integration of Distribution Grid Constraints in an Event-Driven Control Strategy for Plug-in Electric Vehicles in a Multi-Aggregator Setting

  • Chapter
  • First Online:
Plug In Electric Vehicles in Smart Grids

Part of the book series: Power Systems ((POWSYS))

Abstract

In literature, several mechanisms are proposed to prevent Plug-in Electric Vehicles (PEVs) from overloading the distribution grid [1]. However, it is unclear how such technical mechanisms influence the market level control strategies of a PEV aggregator. Moreover, the presence of multiple aggregators in the same distribution grid further complicates the problem. Often, grid congestion management mechanisms are proposed to solve the potential interference between the technical and market objectives. Such methods come at the expense of additional complexity and costs, which is not beneficial for the large scale application of demand response. In our work, we investigate this problem by combining a simple low level voltage droop controller with an event driven control strategy for the coordination of charging PEVs. The approach is evaluated in different distribution grid settings, using two different market objectives for the aggregator.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Geth F, Leemput N, Van Roy J, Buscher J, Ponnette R, Driesen J (2012) Voltage droop charging of electric vehicles in a residential distribution feeder. In: 3rd IEEE PES innovation smart grid technology Europe, (ISGT Europe) IEEE, pp 1–8

    Google Scholar 

  2. De Craemer K, Vandael S, Claessens B, Deconinck G (2013) An event-driven dual coordination mechanism for demand side management of PHEVs. IEEE Trans Smart Grid pp 1–10. doi:10.1109/TSG.2013.2272197

  3. Clement-Nyns K, Haesen E, Driesen J (2010) The impact of charging plug-in hybrid electric vehicles on a residential distribution grid. IEEE Trans Power Syst 25:371–380. doi:10.1109/TPWRS.2009.2036481

    Article  Google Scholar 

  4. Shao S, Pipattanasomporn M, Rahman S (2012) Grid integration of electric vehicles and demand response with customer choice. IEEE Trans Smart Grid 3:543–550. doi:10.1109/TSG.2011.2164949

    Article  Google Scholar 

  5. Gatsis N, Giannakis GB (2012) Residential load control: distributed scheduling and convergence with lost AMI messages. IEEE Trans Smart Grid 3:770–786. doi:10.1109/TSG.2011.2176518

    Article  Google Scholar 

  6. Gatsis N, Giannakis GB (2011) Cooperative multi-residence demand response scheduling. In: 45th Annual conference on information sciences and systems, IEEE, pp 1–6

    Google Scholar 

  7. Fan Z (2012) A distributed demand response algorithm and its application to PHEV charging in smart grids. IEEE Trans Smart Grid 3:1280–1290. doi:10.1109/TSG.2012.2185075

    Article  Google Scholar 

  8. Weckx S, Driesen J, D’hulst R (2013) Optimal real-time pricing for unbalanced distribution grids with network constraints. In: IEEE Power and energy society general meeting, IEEE, pp 1–5

    Google Scholar 

  9. Ma Z, Callaway D, Hiskens I (2010) Decentralized charging control for large populations of plug-in electric vehicles. 49th IEEE conference on decision and control, IEEE, pp 206–212

    Google Scholar 

  10. Anderson RN, Boulanger A, Powell WB, Scott W (2011) Adaptive stochastic control for the smart grid. Proc IEEE 99:1098–1115. doi:10.1109/JPROC.2011.2109671

    Article  Google Scholar 

  11. Wong VWS (2011) An approximate dynamic programming approach for coordinated charging control at vehicle-to-grid aggregator. In: International conference on smart grid communications, IEEE, pp 279–284

    Google Scholar 

  12. Robu V, Stein S, Gerding E, Parkes D, Rogers A, Jennings N (2012) An online mechanism for multi-speed electric vehicle charging. In: 2nd International conference on auctions, market mechanisms, and their applications. Springer, Heidelberg, pp 100–112

    Google Scholar 

  13. Galus MD, La Fauci R, Andersson G (2010) Investigating PHEV wind balancing capabilities using heuristics and model predictive control. In: IEEE power and energy society general meeting, IEEE, pp 1–8

    Google Scholar 

  14. Biegel B, Andersen P, Pedersen TS, Nielsen KM, Stoustrup J, Hansen LH (2013) Smart grid dispatch strategy for on/off demand-side devices. Control Conference (ECC), Europe, pp 2541–2548

    Google Scholar 

  15. Koch S, Mathieu JL, Callaway DS (2011) Modeling and control of aggregated heterogeneous thermostatically controlled loads for ancillary services. In: Proceedings of 17th Power Systems Computation Conference

    Google Scholar 

  16. Vandael S, Claessens B, Hommelberg M, Holvoet T, Deconinck G (2013) A scalable three-step approach for demand side management of plug-in hybrid vehicles. IEEE Trans Smart Grid 4:720–728. doi:10.1109/TSG.2012.2213847

    Article  Google Scholar 

  17. Bach Andersen P, Hu J, Heussen K (2012) Coordination strategies for distribution grid congestion management in a multi-actor, multi-objective setting. In: 3rd IEEE PES innovation smart grid technology Europe, (ISGT Europe) IEEE, pp 1–8

    Google Scholar 

  18. CENELEC (2010) EN 50160—Voltage characteristics of electricity supplied by public electricity networks, July 2010

    Google Scholar 

  19. Pillay P, Manyage M (2001) Definitions of voltage unbalance. IEEE Power Eng Rev 21:50–51. doi:10.1109/39.920965

    Article  Google Scholar 

  20. Seljeseth H, Henning T, Solvang T (2013) Measurements of network impact from electric vehicles during slow and fast charging. In: 22nd International Conference on Electricity Distribution

    Google Scholar 

  21. Liu MB, Canizares CA, Huang W (2009) Reactive power and voltage control in distribution systems with limited switching operations. IEEE Trans Power Syst 24:889–899. doi:10.1109/TPWRS.2009.2016362

    Article  Google Scholar 

  22. Gonzalez C, Geuns J, Weckx S, Wijnhoven T, Vingerhoets P, De Rybel T, Driesen J (2012) LV distribution network feeders in Belgium and power quality issues due to increasing PV penetration levels. In: 3rd IEEE PES innovation smart grid technology Europe, (ISGT Europe) IEEE, pp 1–8

    Google Scholar 

  23. Efkarpidis N, Gonzalez C, Wijnhoven T, Van Dommelen D, De Rybel T, Driesen J (2013) Technical assessment of on-load tap-changers in flemish LV distribution grids. International work integrative solar power into power systems

    Google Scholar 

  24. Kester CPJ, Heskes JMP, (Sjaak) Kaandorp JJ, (Sjef) Cobben JFG, Schoonenberg G, Malyna D, De Jong ECW, Wargers BJ, (Ton) Dalmeijer AJF (2009) A smart MV/LV-station that improves power quality, reliability and substation load profile. In: 20th International conference on electricity distribution, pp 8–11

    Google Scholar 

  25. DIN VDE Std. VDE-AR-N 4105 (2011) Erzeugungsanlagen am Niederspannungsnetz, Technische Mindestanfor-derungen für Anschluss und Parallelbetrieb von Erzeugungsanlagen am Niederspannungsnetz

    Google Scholar 

  26. Synergrid C10/11 (2012) Specifieke technische voorschriften voor decentrale productie-installaties die in parallel werken met het distributienet

    Google Scholar 

  27. Loix T (2011) Participation of inverter-connected distributed energy resources in grid voltage control. KU Leuven

    Google Scholar 

  28. Clement-Nyns K, Haesen E, Driesen J (2011) The impact of vehicle-to-grid on the distribution grid. Electr Power Syst Res 81:185–192. doi:10.1016/j.epsr.2010.08.007

    Article  Google Scholar 

  29. Peças Lopes JA, Polenz SA, Moreira CL, Cherkaoui R (2010) Identification of control and management strategies for LV unbalanced microgrids with plugged-in electric vehicles. Electr Power Syst Res 80:898–906. doi:10.1016/j.epsr.2009.12.013

    Article  Google Scholar 

  30. Garcia-Valle R, Peças Lopes JA (2013) Electric vehicle integration into modern. Power Netw. doi:10.1007/978-1-4614-0134-6

    Google Scholar 

  31. Biegel B, Andersen P, Stoustrup J, Bendtsen JD (2012) Congestion management in a smart grid via shadow prices. In: 8th IFAC symposium on power plant and power system control, pp 518–523

    Google Scholar 

  32. Sundstrom O, Binding C (2012) Flexible charging optimization for electric vehicles considering distribution grid constraints. IEEE Trans Smart Grid 3:26–37. doi:10.1109/TSG.2011.2168431

    Article  Google Scholar 

  33. O’Connell N, Wu Q, Østergaard J, Nielsen AH, Cha ST, Ding Y (2012) Day-ahead tariffs for the alleviation of distribution grid congestion from electric vehicles. Electr Power Syst Res 92:106–114

    Article  Google Scholar 

  34. Verzijlbergh R (2013) The power of electric vehicles—exploring the value of flexible electricity demand in a multi-actor context. Dissertation, TU Delft

    Google Scholar 

  35. Kok K (2013) The powermatcher: smart coordination for the smart electricity grid, p 314. Vrije Universiteit, Amsterdam

    Google Scholar 

  36. Kok K, Warmer K, Kamphuis R (2005) PowerMatcher: multiagent control in the electricity infrastructure. In: Proceedings of the 4th international joint conference on autonomous agents and multiagent systems (AAMAS 05’). New York, pp 75–82

    Google Scholar 

  37. Kok JK, Scheepers MJJ, Kamphuis IG (2010) Intelligence in electricity networks for embedding renewables and distributed generation. Intelligent infrastructures, Springer, pp 179–209

    Google Scholar 

  38. Van Roy J, Leemput N, Geth F, Salenbien R, Buscher J, Driesen J (2014) Apartment building electricity system impact of operational electric vehicle charging strategies. IEEE Trans Sustain Energy 5:264–272. doi:10.1109/TSTE.2013.2281463

    Article  Google Scholar 

  39. Van Roy J, Leemput N, De Breucker S, Geth F, Peter T, Driesen J (2011) An availability analysis and energy consumption model for a flemish fleet of electric vehicles. European Electrical Vehicle Congr Brussels, p 12

    Google Scholar 

  40. Raab AF, Ellingsen M, Walsh A (2011) Mobile energy resources in grids of electricity—WP 1 Task 1.6 Deliverable D1.4—learning from EV FIeld Tests

    Google Scholar 

  41. Brand AJ, Kok K (2003) Aanbodvoorspeller duurzame energie. https://www.ecn.nl/avde/

  42. Brand AJ (2008) Wind power forecasting method AVDE. China Glob Wind Power

    Google Scholar 

  43. Nordex (2009) Datenblatt N80/2500 (2.5 MW). http://www.nordex-online.com/en/produkte-service/wind-turbines/n80-25-mw/product-data-sheet-n80-25mw.html

  44. Dupont B, Vingerhoets P, Tant P, Vanthournout K, Cardinaels W, De Rybel T, Peeters E, Belmans R (2012) Linear breakthrough project: large-scale implementation of smart grid technologies in distribution grids. In: 3rd IEEE PES innovation smart grid technology Europe, (ISGT Europe) IEEE, pp 1–8

    Google Scholar 

  45. Leemput N, Geth F, Van Roy J, Delnooz A, Büscher J, Driesen J (2014) Impact of electric vehicle on-board single-phase charging strategies on a flemish residential grid. IEEE Trans Smart Grid, 5(4)1815–1822. doi: 10.1109/TSG.2014.2307897 

    Google Scholar 

  46. Clement-Nyns K (2010) Impact of plug-in hybrid electric vehicles on the electricity system. KU Leuven

    Google Scholar 

  47. VREG (2013) RAPP-2013-06—De kwaliteit van de dienstverlening van de elektriciteitsdistributienetbeheerders in het Vlaamse Gewest in 2012

    Google Scholar 

  48. NBN (1975) C33-322—Kabels Voor Ondergrondse Aanleg, met Synthetische Isolatie en Versterkte Mantel (Type 1 kV)

    Google Scholar 

  49. Shao S, Zhang T, Pipattanasomporn M, Rahman S (2010) Impact of TOU rates on distribution load shapes in a smart grid with PHEV penetration. IEEE PES transmission and distribution, IEEE, pp 1–6

    Google Scholar 

  50. Dupont B, De Jonghe C, Olmos L, Belmans R (2014) Demand response with locational dynamic pricing to support the integration of renewables. Energy Policy 67:344–354. doi:10.1016/j.enpol.2013.12.058

    Article  Google Scholar 

  51. Baritaud M (2012) Securing power during the transition. Generation investment and operation, IEA (International Energy Agency), pp 47

    Google Scholar 

  52. Vaya MG, Andersson G (2013) Integrating renewable energy forecast uncertainty in smart-charging approaches for plug-in electric vehicles. IPowerTech (POWERTECH), 2013 IEEE Grenoble, pp 1–6, IEEE

    Google Scholar 

  53. Elia (2014) Nominated capacity: Belgium—Netherlands. http://www.elia.be/en/grid-data/interconnections/nominated-capacity-bel-neth. Accessed 20 Jan 2014

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geert Deconinck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

De Craemer, K., Vandael, S., Claessens, B., Deconinck, G. (2015). Integration of Distribution Grid Constraints in an Event-Driven Control Strategy for Plug-in Electric Vehicles in a Multi-Aggregator Setting. In: Rajakaruna, S., Shahnia, F., Ghosh, A. (eds) Plug In Electric Vehicles in Smart Grids. Power Systems. Springer, Singapore. https://doi.org/10.1007/978-981-287-302-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-287-302-6_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-287-301-9

  • Online ISBN: 978-981-287-302-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics