Skip to main content

STATCOM Application for Mitigation of Subsynchronous Resonance in Wind Farms Connected to Series-Compensated Transmission Lines

  • Chapter
  • First Online:

Part of the book series: Power Systems ((POWSYS))

Abstract

Large-scale integration of wind farms in transmission networks has led to several challenges; one of which is the need for increased transmission capacity to transport bulk amounts of wind power. Series compensation is an established means of enhancing the power transfer capability of existing transmission lines and is being increasingly considered for integrating large wind power plants. However, series-compensated transmission lines may cause subsynchronous resonance (SSR) in turbine-generators, which can lead to electrical instability at subsynchronous frequencies and potential turbine-generator shaft failures. This chapter presents a thorough mathematical analysis of SSR in a double-cage induction generator (IG) based wind farm connected to a series-compensated transmission line and its mitigation. The prediction of SSR is done for a wide range of wind farm sizes and series compensation levels through eigenvalue studies and equivalent circuit analysis. Two types of STATCOM controllers are proposed and tested with an aggregated wind farm model. In the proposed controller-I the DC voltage remains uncontrolled and only the angular difference between the STATCOM terminal and the Point of Common Coupling (PCC) bus voltage is controlled. In controller-II, the DC link capacitor voltage is controlled by the phase angle difference between the STATCOM terminal and PCC bus voltage. Both the modulation index and angle are controlled in this controller. Studies are conducted for three different induction generators used in commercial wind farms. Fault studies are also conducted at different locations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. American Wind Energy Association (Online). http://www.awea.org/

  2. Canada Wind Energy Association (Online). http://www.canwea.ca/

  3. European Wind Energy Association (Online). http://www.ewea.org/

  4. Electric Reliability Council of Texas (Online). http://www.ercot.com/

  5. Ackerman T (2005) Wind power in power systems. Wiley, New York

    Book  Google Scholar 

  6. Akhmatov V (2007) Induction generators for wind power. Multi Science, UK

    Google Scholar 

  7. Boldea I (2006) Variable speed generators. CRC Press, New York

    Google Scholar 

  8. Fox B, Flynn D, Bryans L, Jenkins N, Milborrow D, O’Malley M, Watson R, Anaya-Lara O (2007) Wind power integration: connection and system operation aspects. IET power and energy series, United Kingdom

    Google Scholar 

  9. Jenkins N, Allan R, Crossley P, Krschen D, Strbac G (2008) Embedded generation. IET power and energy series, United Kingdom

    Google Scholar 

  10. Pourbeik P, Koessler RJ, Dickmander DL, Wong W (2003) Integration of large wind farms into utility grids (Part 2—performance issues). In: Proceedings 2003 IEEE PES GM, pp 1520–1525

    Google Scholar 

  11. Henderson M, Bertagnolli D, Ramey D (2009) Planning HVDC and FACTS in New England. In: Proceedings 2009 IEEE/PES PSCE, pp 1–3

    Google Scholar 

  12. Ercot CREZ Transmission optimization study (Online). Available www.ercot.com http://transmission.bpa.gov/business/generation_interconnection/documents/STD-N-000001-00-01_071509.pdf

  13. Southern Alberta Transmission Reinforcement Needs Identification Document (Online). Available http://www.aeso.ca

  14. Wagner CF (1941) Self-excitation of induction motors with series capacitors. Trans Am Inst Electr Eng 60(12):1241–1247

    Article  Google Scholar 

  15. Limebeer DJN, Harley RG (1981) Subsynchronous resonance of single-cage induction motors. IEE Proc B Electr Power Appl 128(1):33–42

    Article  Google Scholar 

  16. Limebeer DJN, Harley RG (1981) Subsynchronous resonance of deep-bar induction motors. IEE Proc B Electr Power Appl 128(1):43–51

    Article  Google Scholar 

  17. Bowler CE, Khan E (2005) Wilmarth-Lakefield 345 kV transmission series capacitor study: phase 2 SSR evaluation report Rev.1.0. Xcel Energy Inc. internal report

    Google Scholar 

  18. Tabesh A, Iravani R (2006) Small-signal dynamic model and analysis of a fixed-speed wind farm—a frequency response approach. IEEE Trans Power Deliv 21(2):778–787

    Article  Google Scholar 

  19. Varma RK, Auddy S (2006) Mitigation of subsynchronous oscillations in a series compensated wind farm with static var compensator. In: Proceedings 2006 IEEE power engineering society general meeting, pp 1–7

    Google Scholar 

  20. Varma RK, Auddy S (2006) Mitigation of subsynchronous resonance by SVC using PMU-acquired remote generator speed. In: Proceedings 2006 IEEE power India conference, pp 1–8

    Google Scholar 

  21. Varma RK, Semsedini Y, Auddy S (2007) Mitigation of subsynchronous oscillations in a series compensated wind farm with thyristor controlled series capacitor (TCSC). In: Proceedings 2007 power systems conference: advanced metering, protection, control, communication, and distributed resources, pp 331–337

    Google Scholar 

  22. Varma RK, Auddy S, Semsedini Y (2008) Mitigation of subsynchronous resonance in a series-compensated wind farm using FACTS controllers. IEEE Trans Power Deliv 23(3):1645–1654

    Article  Google Scholar 

  23. Ostadi A, Yazdani A, Varma RK (2009) Modeling and stability analysis of a DFIG-based wind-power generator interfaced with a series-compensated line. IEEE Trans Power Deliv 24(3):1504–1514

    Article  Google Scholar 

  24. El-Moursi MS, Bak-Jensen B, Abdel-Rahman MH (2010) Novel STATCOM controller for mitigating SSR and damping power system oscillations in a series compensated wind park. IEEE Trans Power Electron 25(2):429–441

    Article  Google Scholar 

  25. El-Moursi MS (2012) Mitigating subsynchronous resonance and damping power system oscillation in a series compensated wind park using a novel static synchronous series compensator control algorithm. Wind Eng 15(3):363–377

    Article  Google Scholar 

  26. Fan L, Kavasseri R, Miao ZL, Zhu C (2010) Modeling of DFIG-based wind farms for SSR analysis. IEEE Trans Power Deliv 25(4):2073–2082

    Article  Google Scholar 

  27. Fan L, Zhu C, Miao Z, Hu M (2011) Modal analysis of a DFIG-based wind farm interfaced with a series compensated network. IEEE Trans Energy Convers 26(4):1010–1020

    Article  Google Scholar 

  28. Irwin GD, Jindal AK, Isaacs AL (2011) Subsynchronous control interactions between type 3 wind turbines and series compensated AC transmission systems. In: Proceedings 2011 IEEE PES GM, pp 1–6

    Google Scholar 

  29. Fan L, Miao Z (2012) Mitigating SSR using DFIG-based wind generation. IEEE Trans Sustain Energy 3(3):349–358

    Article  Google Scholar 

  30. Subsynchronous interaction between Series-Compensated Transmission Lines and Generation (Online). Available http://www.nerc.com/files/LL_45_SubsynchronousInteraction.pdf

  31. Narendra K, Fedirchuk D, Midence R, Zhang N, Mulawarman A, Mysore P, Sood V (2011) New microprocessor based relay to monitor and protect power systems against sub-harmonics. In: Proceedings 2011 IEEE electrical power and energy conference, pp 438–443

    Google Scholar 

  32. Bongiorno M, Peterson A, Agneholm E (2011) The impact of wind farms on subsynchronous resonance in power systems. Elforsk Report 11:29

    Google Scholar 

  33. Anderson PM, Farmer RG (1996) Series compensation of power systems. PBLSH Publication, California

    Google Scholar 

  34. Anderson PM, Agrawal BL, Van Ness JE (1990) Subsynchronous resonance in power systems. IEEE Publication, New York

    Google Scholar 

  35. IEEE committee report (1977) First benchmark model for computer simulation of subsynchronous resonance. IEEE Trans Power Apparatus Syst 96(5):1565–1572

    Article  Google Scholar 

  36. IEEE Committee Report (1985) Terms, definitions and symbols for subsynchronous oscillations. IEEE Trans Power Apparatus Syst PAS-104(6):1326–1334

    Article  Google Scholar 

  37. Padiyar KR (1999) Analysis of subsynchronous resonance in power system. Kluwer Academic Publisher, USA

    Book  Google Scholar 

  38. IEEE Committee Report (1992) Reader’s guide to subsynchronous resonance. IEEE Trans Power Syst 7(1):150–157

    Article  Google Scholar 

  39. Johansson N, Angquist L, Nee HP (2011) A comparison of different frequency scanning methods for study of subsynchronous resonance. IEEE Trans Power Syst 26(1):356–363

    Article  Google Scholar 

  40. Agrawal BL, Farmer RG (1979) Use of frequency scanning techniques for subsynchronous resonance analysis. IEEE Trans Power Apparatus Syst PAS-98(2):341–349

    Article  Google Scholar 

  41. El-Marsafawy M (1983) Use of frequency-scan techniques for subsynchronous-resonance analysis of a practical series-capacitor compensated AC network. In: IEE proceedings C generation, transmission and distribution vol 130, no 1, pp 28–40

    Google Scholar 

  42. Crow ML (2010) Computational methods for electric power systems. CRC Press, New York

    Google Scholar 

  43. Anaya-Lara O, Jenkins N, Ekanayake J, Cartwright P, Guges M (2009) Wind energy generation: modeling and control. Wiley, USA

    Google Scholar 

  44. MATLAB (2011) The language for technical computing. The Mathworks Inc

    Google Scholar 

  45. Application guide PSCAD/EMTDC (Online). Available https://pscad.com/sites/default/files/documents/Application_Guide_2008.pdf

  46. Moharana AK (2012) Subsynchronous resonance in wind farms. PhD dissertation, University of Western Ontario, Canada

    Google Scholar 

  47. Hau E (2006) Wind turbines: fundamentals, technologies, application, economics, 2nd edn. Springer, Germany

    Book  Google Scholar 

  48. Lubosny Z (2003) Wind turbine operation in electric power systems. Springer, Germany

    Book  Google Scholar 

  49. Muyeen SM, Ali MH, Takahashi R, Murata T, Tamura J, Tomaki Y, Sakahara A, Sasano E (2007) Comparative study on transient stability analysis of wind turbine generator system using different drive train models. IET Renew Power Gener 1(2):131–141

    Article  Google Scholar 

  50. Petru T, Thiringer T (2002) Modeling of wind turbines for power system studies. IEEE Trans Power Syst 17(4):1132–1139

    Article  Google Scholar 

  51. Mei F, Pal B (2007) Modal analysis of grid-connected doubly fed induction generators. IEEE Trans Energy Convers 22(3):728–736

    Article  Google Scholar 

  52. Pal B, Mei F (2008) Modelling adequacy of the doubly fed induction generator for small-signal stability studies in power systems. IET Renew Power Gener 2(3):181–190

    Article  Google Scholar 

  53. Perdana A (2008) Dynamic model of wind turbines. PhD dissertation, Chalmers University of Technology, Sweden

    Google Scholar 

  54. Levi E, Rauski D (1993) Modeling of deep-bar and double cage self-excited induction generators for wind-electricity generation studies. Electr Power Syst Res 27(1):73–81

    Article  Google Scholar 

  55. Levi E (1997) General method of magnetizing flux saturation modeling in d-q axis models of double-cage induction machines. IEE Proc—Electr Power Appl 144(2):101–109

    Article  Google Scholar 

  56. Pedra J, Candela I, Sainz L (2009) Modelling of squirrel-cage induction motors for electromagnetic transient programs. IET Electr Power Appl 3(2):111–122

    Article  Google Scholar 

  57. Pedra J, Corcoles F, Monjo L, Bogarra S, Rolan A (2012) On Fixed-speed WT generator modeling for rotor speed stability studies. IEEE Trans Power Syst 27(1):397–406

    Article  Google Scholar 

  58. Pedra J, Corcoles F (2004) Estimation of induction motor double-cage model parameters from manufacturer data. IEEE Trans Energy Convers 19(2):310–317

    Article  Google Scholar 

  59. Kundur P (1994) Power system stability and control. McGraw-Hill, New York

    Google Scholar 

  60. Germond AJ, Podmore R (1978) Dynamic aggregation of generating unit models. IEEE Trans Power Apparatus Syst PAS-97(4):1060–1069

    Article  Google Scholar 

  61. Chan SM, Cresap RL, Curtice DH (1984) Wind turbine cluster model. IEEE Trans Power Apparatus Syst PAS-103(7):1692–1698

    Article  Google Scholar 

  62. Nozari FK, David Price M, William W (1987) Aggregation of induction motors for transient stability load modeling. IEEE Trans Power Syst 2(4):1096–1103

    Article  Google Scholar 

  63. Taleb M, Akbaba M, Abdullah EA (1994) Aggregation of induction machines for power system dynamic studies. IEEE Trans Power Syst 9(4):2042–2048

    Article  Google Scholar 

  64. Louie KW (2006) Aggregating induction motors in a power system based on their standard specifications. In: Proceedings 2006 international conference on power system technology, pp 1–8

    Google Scholar 

  65. Patil KV, Senthil J, Jiang J, Mathur RM (1998) Application of STATCOM for damping torsional oscillations in series compensated AC systems. IEEE Trans Energy Convers 13(3):237–243

    Article  Google Scholar 

  66. Schauder C, Mehta H (1993) Vector analysis and control of advanced static VAr compensators. In: IEE proceedings C generation, transmission and distribution vol 140, no. 4, pp 299–306, Jul 1993

    Google Scholar 

  67. Moharana A, Varma RK, Seethapathy R (2014) SSR alleviation by STATCOM in induction-generator-based wind farm connected to series compensated line. IEEE Trans Sustain Energy 5(3):947–957

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akshaya Kumar Moharana .

Editor information

Editors and Affiliations

Appendix

Appendix

Table 18.8 Wind turbine torsional system data [11, 51]
Table 18.9 Double-cage induction generator data [57, 67]
Table 18.10 STATCOM data [67]
Table 18.11 STATCOM parameters
Table 18.12 STATCOM controller parameters [67]

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Moharana, A.K., Varma, R.K. (2015). STATCOM Application for Mitigation of Subsynchronous Resonance in Wind Farms Connected to Series-Compensated Transmission Lines. In: Shahnia, F., Rajakaruna, S., Ghosh, A. (eds) Static Compensators (STATCOMs) in Power Systems. Power Systems. Springer, Singapore. https://doi.org/10.1007/978-981-287-281-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-981-287-281-4_18

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-287-280-7

  • Online ISBN: 978-981-287-281-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics