Skip to main content

Modeling of STATCOM in Load Flow Formulation

  • Chapter
  • First Online:

Part of the book series: Power Systems ((POWSYS))

Abstract

This chapter presents an easy modeling of STATCOM into a recent Newton–Raphson (NR) load flow method. This load flow formulation is based on power and current injection mismatches. In this new load flow, the current mismatch equations are used to represent the PQ buses while the power mismatches are used for PV buses. This load flow formulation decreases the required number of equations, the computation time and improves the convergence performance especially in case of PV buses. The developed STATCOM model is considered as an application for the representation of PV buses in the new NR power and current injection mismatches load flow formulation. In this model, the connected buses with STATCOM are converted to PV buses with zero active power generation and the voltage magnitudes are fixed at the pre-request values. The controlled buses are incorporated in load flow algorithm as power injection mismatch equations. The parameters of STATCOM can be calculated during the iterative process using simple equations based on its configuration.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Gotham DJ, Heydt GT (1998) Power flow control and power flow studies for systems with FACTS devices. IEEE Trans Power Syst 13:60–66

    Article  Google Scholar 

  2. Kamel S, Abdel-Akher M, Jurado F, Ruiz-Rodríguez FJ (2013) Modeling and analysis of voltage and power control devices in current injections load flow method. Electric Power Compon Syst 41:324–344

    Article  Google Scholar 

  3. Radman G, Raje SR (2007) Power flow model/calculation for power systems with multiple FACTS controllers. Electric Power Syst Res 77:1521–1531

    Article  Google Scholar 

  4. Canizares CA, Pozzi M, Corsi S, Uzunovic E (2003) STATCOM modeling for voltage and angle stability studies. Int J Electric Power Energy Syst 6:421–422

    Google Scholar 

  5. Yankui Z, Yan Z, Bei W, Jian Z (2006) Power injection model of STATCOM with control and operating limit for power flow and voltage stability analysis. Electric Power Syst Res 76:1003–1010

    Article  Google Scholar 

  6. Kamel S, Abdel-Akher M, Song MK (2012) Analysis and modeling of a unified power flow controller in Newton-Raphson load flow. Adv Sci Lett 8:884–889

    Article  Google Scholar 

  7. Bhowmick S, Das B, Kumar N (2011) An advanced static synchronous compensator model to reuse Newton and decoupled power flow codes. Electric Power Compon Syst 39:1647–1666

    Article  Google Scholar 

  8. Acha E, Ambriz-Pérez H, Fuerte-Esquivel CR, Angeles-Camacho C (2004) FACTS: modelling and simulation in power networks, Wiley-Blackwell, New York

    Google Scholar 

  9. Bhowmick S, Das B, Kumar N (2011) An advanced static synchronous compensator model to reuse Newton and decoupled power flow codes. Electric Power Compon Syst 39(15):1647–1666

    Article  Google Scholar 

  10. Nor KM., Mokhlis H, Gani TA (2004) Reusability techniques in load-flow analysis computer program. IEEE Trans Power Syst 19 (4):1754–1762

    Google Scholar 

  11. da Cost VM, Martins N, Pereira JLR (1999) Developments in the Newton-Raphson power flow formulation based on current injections. IEEE Trans Power Syst 14:1320–1326

    Article  Google Scholar 

  12. da Cost VM, Martins N, Pereira JLR (2001) An augmented Newton-Raphson power flow formulation based on current injections. Electr Power Energy Syst 23:305–312

    Article  Google Scholar 

  13. Garcia PAN, Pereira JLR, Carneiro S, da Cost VM, Martins N (2000) Three-phase power flow calculations using the current injection method. IEEE Trans Power Syst 15:508–514

    Article  Google Scholar 

  14. Garcia PAN, Pereira JLR, Carneiro S, Vinagre MP, Gomes FV (2004) Improvements in the representation of PV buses on three-phase distribution power flow. IEEE Trans Power Deliv 19:894–896

    Article  Google Scholar 

  15. Hingorani NG, Gyugyi L (2000) Understanding FACTS—concepts and technology of flexible AC transmission systems. IEEE Press, NewYork

    Google Scholar 

  16. Yang Z, Crow ML, Shen C, Zhang L (2000) The steady-state characteristics of A STATCOM with energy storage. IEEE Power Eng Soc Summer Meet 2:669–674

    Google Scholar 

  17. Hanson DJ, Woodhouse ML, Horwill C, Monkhouse DR, Osborne MM (2002) STATCOM: a new era of reactive compensation. Power Eng J 151–160

    Google Scholar 

  18. Wang HF, Li H, Chen H (2002) Application of cell immune response modelling to power system voltage control by STATCOM. IEE Proc—Gener, Trans Distrib 149(1):102–107

    Article  Google Scholar 

  19. Haque MH (2004) Use of energy function to evaluate the additional damping provided by a STATCOM. Electric Power Syst Res 72(2):195–202

    Article  Google Scholar 

  20. Abido MA (2005) Analysis and assessment of STATCOM-based damping stabilizers for power system stability enhancement. Electric Power Syst Res 73(2):177–185

    Article  Google Scholar 

  21. Padiyar KR, Parkash VS (2003) Tuning and performance evaluation of damping controller for a STATCOM. Int J Electric Power Energy Syst 25(2):155–166

    Article  Google Scholar 

  22. Cong L, Wang Y (2002) Coordinated control of generator excitation and STATCOM for rotor angle stability and voltage regulation enhancement of power systems. IEE Proc—Gener, Trans Distrib 149(6):659–666

    Article  Google Scholar 

  23. Rahim AHMA, Al-Baiyat SA, Al-Maghrabi HM (2002) Robust damping controller design for a static compensator. IEE Proc—Gener, Trans Distrib 149(4):491–496

    Article  Google Scholar 

  24. STATCOM Prototype in the Turkish Transmission System, (Online). Available http://www.guckalitesi.gen.tr/en/projects/alt08.php

  25. Gyugyi L (1994) Dynamic compensation of ac transmission lines by solid-state synchronous voltage source. IEEE Trans Power Deliv 9(2):904–911

    Article  Google Scholar 

  26. Sen KK (1999) STATCOM—STATic synchronous COMpensator: theory, modeling, and applications. IEEE proceeding of: power engineering society winter meeting

    Google Scholar 

  27. Zhang X.-P, Rehtanz C, Pal BC (2006) Flexible AC transmission systems: modelling and control Monograph. Springer Power Systems Series

    Google Scholar 

  28. Ferreira CA, da Costa VM (2005) A second order power flow based on current injection equations. Int J Electric Power Energy Syst 27(4):254–263

    Article  Google Scholar 

  29. Garcia PAN, Pereira JLR, Carneiro S, da Cost VM, Martins N (2000) Three-phase power flow calculations using the current injection method. IEEE Trans Power Syst 15(2):508–514

    Article  Google Scholar 

  30. Penido DRR, de Araujo LR, Carneiro S, Pereira JLR, Garcia PAN (2008) Three-phase power flow based on four-conductor current injection method for unbalanced distribution networks. IEEE Trans Power Syst 23(2):494–503

    Article  Google Scholar 

  31. de Araujo LR, Penido DRR, Junior SC, Pereira JLR, Garcia PAN (2010) Comparisons between the three-phase current injection method and the forward/backward sweep method. Int J Electric Power Energy Syst 32(7):825–833

    Article  Google Scholar 

  32. Penido DRR, de Araujo LR, Carneiro Jr S, Pereira JLR, Garcia PAN (2007) Power factor correction on distribution networks including distributed generation. IEEE Power Engineering Society General Meeting

    Google Scholar 

  33. Penido DRR, de Araujo LR, Junior SC, Pereira JLR (2013) A new tool for multiphase electrical systems analysis based on current injection method. Int J Electric Power Energy Syst 44(1):410–420

    Article  Google Scholar 

  34. Garcia PAN, Pereira JLR, Carneiro S Jr (2001) Voltage control devices models for distribution power flow analysis. IEEE Trans Power Syst 16(4):586–594

    Article  Google Scholar 

  35. Penido DRR, de Araujo LR, Carneiro Jr S, Pereira JLR (2006) Unbalanced three-phase distribution system load-flow studies including induction machines. IEEE Power Engineering Society General Meeting

    Google Scholar 

  36. da Costa VM, de Oliveira ML, Guedes MR (2007) Developments in the analysis of unbalanced three-phase power flow solutions. Int J Electric Power Energy Syst 29(2):175–182

    Article  Google Scholar 

  37. de Araujo LR, Penido DRR, Júnior SC, and Pereira JLR (2010) Power-flow analysis of the IEEE 8500-node test feeder using the current injection method. IEEE PES transmission and distribution conference and exposition

    Google Scholar 

  38. Penido DRR, de Araujo LR, Pereira JLR, Garcia PAN, and Carneiro S (2004) Four wire Newton-Rapshon power flow based on the current injection method. IEEE PES power systems conference and exposition

    Google Scholar 

  39. Kamel S, Abdel-Akher M, Jurado F (2013) Improved NR current injection load flow using power mismatch representation of PV bus. Int J Electr Power Energy Syst 53:64–68

    Article  Google Scholar 

  40. Kamel S, Jurado F, Vera D (2013) A simple implementation of power mismatch STATCOM model into current injection Newton-Raphson power-flow method. Electri Eng (Archiv für Electrotechnik). doi:10.1007/s00202-013-0288-4

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Salah Kamel or Francisco Jurado .

Editor information

Editors and Affiliations

Appendix

Appendix

See Table 12.6.

Table 12.6 Load flow solution of 118-bus system without and with STATCOM (Tolerance = 0.00001)

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Kamel, S., Jurado, F. (2015). Modeling of STATCOM in Load Flow Formulation. In: Shahnia, F., Rajakaruna, S., Ghosh, A. (eds) Static Compensators (STATCOMs) in Power Systems. Power Systems. Springer, Singapore. https://doi.org/10.1007/978-981-287-281-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-287-281-4_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-287-280-7

  • Online ISBN: 978-981-287-281-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics