Skip to main content

Stress Concentration, Fracture and Damage in Auxetic Materials

  • Chapter
  • First Online:
Auxetic Materials and Structures

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

This chapter considers the damage properties of auxetic solids. In the study of stress concentration factors in auxetic solids and plates arising from cavities and rigid inclusions , most cases exhibit minimum stress concentration when the solids possess negative Poisson’s ratio. In discussing the three modes of fracture in auxetic solids in dimensionless terms, most plots exhibit a clear demarcation between auxetic and conventional regions. The consideration of damage criteria based on thermodynamic analysis by Lemaitre and Baptiste (NSF workshop on mechanics of damage and fracture, 1982) shows that as an isotropic solid changes from conventional to auxetic, the damage criterion shifts from being highly dependent on the von Mises equivalent stress to being highly dependent on the hydrostatic stress. Progress on fatigue failure of auxetic materials is then given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alderson A, Evans KE (1995) Microstructural modelling of auxetic microporous polymers. J Mater Sci 30(13):3319–3332

    Article  Google Scholar 

  • Alderson A, Evans KE (1997) Modelling concurrent deformation mechanisms in auxetic microporous polymers. J Mater Sci 32(11):2797–2809

    Article  Google Scholar 

  • Alderson A, Evans KE (2001) Rotation and dilation deformation mechanisms for auxetic behaviour in the α-cristobalite tetrahedral framework structure. Phys Chem Miner 28(10):711–718

    Article  Google Scholar 

  • Bezazi A, Scarpa F (2007) Mechanical behavior of conventional and negative Poisson’s ratio thermoplastic foams under compressive cyclic loading. Int J Fatigue 29(5):922–930

    Article  Google Scholar 

  • Chen YJ, Scarpa F, Liu YJ, Leng JS (2013) Elasticity of antitetrachiral anisotropic lattices. Int J Solids Struct 50(6):996–1004

    Article  Google Scholar 

  • Chiang CR (2008) Stress concentration factors of a general triaxial ellipsoidal cavity. Fatigue Fract Eng Mater Struct 31(12):1039–1046

    Article  Google Scholar 

  • Chiang CR (2011) A design equation for the stress concentration factor of an oblate ellipsoidal cavity. J Strain Anal Eng Des 46(2):87–94

    Google Scholar 

  • Cosserat E, Cosserat F (1909) ThĂ©orie des Corps deformables. Hermann et Fils, Paris

    Google Scholar 

  • Gaspar N, Smith CW, Alderson A, Grima JN, Evans KE (2011) A generalised three-dimensional tethered-nodule model for auxetic materials. J Mater Sci 46(2):372–384

    Article  Google Scholar 

  • Goland M (1943) The Influence of the shape and rigidity of an elastic inclusion on the transverse flexure of thin plates. ASME J Appl Mech 10:A69–A75

    MATH  MathSciNet  Google Scholar 

  • Goodier JN (1936) The influence of circular and elliptical openings on the transverse flexure of elastic plate. Philos Mag 22(4):69–80

    Article  MATH  Google Scholar 

  • Goodier JN (1933) Concentration of stress around spherical and cylindrical inclusions and flaws. Trans ASME 55:39–44

    Google Scholar 

  • Grima JN, Williams JJ, Evans KE (2005) Networked calix[4]arene polymers with unusual mechanical properties. Chem Commun 32:4065–4067

    Article  Google Scholar 

  • Grima JN, Zammit V, Gatt R, Alderson A, Evans KE (2007) Auxetic behaviour from rotating semi-rigid units. Phys Status Solidi B 244(3):866–882

    Article  Google Scholar 

  • He CB, Liu PW, Griffin AC (1998) Toward negative Poisson ratio polymers through molecular design. Macromolecules 31(9):3145–3147

    Article  Google Scholar 

  • He CB, Liu PW, McMullan PJ, Griffin AC (2005) Toward molecular auxetics: Main chain liquid crystalline polymers consisting of laterally attached para-quaterphenyls. Phys Status Solidi B 242(3):576–584

    Article  Google Scholar 

  • Irwin G (1957) Analysis of stresses and strains near the end of a crack traversing a plate. ASME J Appl Mech 24:361–364

    Google Scholar 

  • Lakes R (1987a) Foam structures with negative Poisson’s ratio. Science 235(4792):1038–1040

    Article  Google Scholar 

  • Lakes R (1987b) Negative Poisson’s ratio materials. Science 238(4826):551

    Article  Google Scholar 

  • Lakes RS (1993) Design considerations for negative Poisson’s ratio materials. ASME J Mech Des 115:696–700

    Article  Google Scholar 

  • Lemaitre J, Baptiste D (1982) On damage criteria. Proceedings of NSF workshop on mechanics of damage and fracture, Atlanta, Georgia

    Google Scholar 

  • Lim TC (2013) Stress concentration factors in auxetic rods and plates. Appl Mech Mater 394:134–139

    Article  Google Scholar 

  • Mindlin RD (1965) Stress functions for a Cosserat continuum. Int J Solids Struct 1(3):265–271

    Article  Google Scholar 

  • Neuber H (1937) Kerbspannungslehre. Springer, Berlin

    Book  Google Scholar 

  • Neuber H (1958) Theory of Notch Stresses. Springer, Berlin

    Google Scholar 

  • Sadowsky MA, Sternberg E (1947) Stress concentration around an ellipsoidal cavity in an infinite body under arbitrary plane stress perpendicular to the axis of revolution of cavity. ASME J Appl Mech 14:191–201

    MathSciNet  Google Scholar 

  • Sadowsky MA, Sternberg E (1949) Stress concentration around a triaxial ellipsoidal cavity. ASME J Appl Mech 16:149–157

    MATH  MathSciNet  Google Scholar 

  • Smith CW, Grima JN, Evans KE (2000) A novel mechanism for generating auxetic behaviour in reticulated foams: missing rib foam model. Acta Mater 48(17):4349–4356

    Article  Google Scholar 

  • Spadoni A, Ruzzene M (2012) Elasto-static micro polar behavior of a chiral auxetic lattice. J Mech Phys Solids 60(1):156–171

    Article  Google Scholar 

  • Taylor M, Francesconi L, Gerendas M, Shanian A, Carson C, Bertoldi K (2013) Low porosity metallic periodic structures with negative Poisson’s ratio. Adv Mater 26(15):2365–2370

    Article  Google Scholar 

  • Voyiadjis GZ, Kattan PI (2005) Damage Mechanics. CRC Press, Boca Raton

    Book  MATH  Google Scholar 

  • Wojciechowski KW (1987) Constant thermodynamic tension Monte-Carlo studies of elastic properties of a two-dimensional system of hard cyclic hexamers. Mol Phys 61(5):1247–1258

    Article  Google Scholar 

  • Wojciechowski KW (1989) Two-dimensional isotropic system with a negative Poisson ratio. Phys Lett A 137(1&2):60–64

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teik-Cheng Lim .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Lim, TC. (2015). Stress Concentration, Fracture and Damage in Auxetic Materials. In: Auxetic Materials and Structures. Engineering Materials. Springer, Singapore. https://doi.org/10.1007/978-981-287-275-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-287-275-3_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-287-274-6

  • Online ISBN: 978-981-287-275-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics