Skip to main content

Micromechanical Models for Auxetic Materials

  • Chapter
  • First Online:
Auxetic Materials and Structures

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

This chapter provides a survey of micromechanical models that seek to predict and explain auxetic behavior, based on re-entrant microstructures, nodule-fibril microstructure, 3D tethered-nodule model, rotating squares , rectangles, triangles and tetrahedrals models, hard cyclic hexamers model, missing rib models , chiral and anti-chiral models, interlocking hexagon model , and the “egg rack” model. All the micromechanical models exhibit a common trait—auxeticity is highly dependent on the microstructural geometry. In some of the micromechanical geometries, comparisons between analytical results have been made with experimental or computational results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abramovitch H, Burgard M, Edery-Azulay L, Evans KE, Hoffmeister M, Miller W, Scarpa F, Smith CW, Tee KF (2010) Smart tetrachiral and hexachiral honeycomb: sensing and impact detection. Compos Sci Technol 70(7):1072–1079

    Article  Google Scholar 

  • Alderson KL, Neale PJ (1994) Private communication

    Google Scholar 

  • Alderson A, Evans KE (1995) Microstructural modelling of auxetic microporous polymers. J Mater Sci 30(13):3319–3332

    Article  Google Scholar 

  • Alderson A, Evans KE (1997) Modelling concurrent deformation mechanisms in auxetic microporous polymers. J Mater Sci 32(11):2797–2809

    Article  Google Scholar 

  • Alderson KL, Alderson A, Evans KE (1997) The interpretation of the strain-dependent Poisson’s ratio in auxetic polyethylene. J Strain Anal Eng Des 32(3):201–212

    Article  Google Scholar 

  • Alderson A, Evans KE (2001) Rotation and dilation deformation mechanisms for auxetic behavior in the α-cristobalite tetrahedral framework structure. Phys Chem Miner 28(10):711–718

    Article  Google Scholar 

  • Alderson A, Alderson KL, Chirima G, Ravirala N, Zied KM (2010a) The in-plane linear elastic constants and out-of-plane bending of 3-coordinated ligament and cylinder-ligament honeycombs. Compos Sci Technol 70(7):1034–1041

    Article  Google Scholar 

  • Alderson A, Alderson KL, Attard D, Evans KE, Gatt R, Grima JN, Miller W, Ravirala N, Smith CW, Zied K (2010b) Elastic constants of 3-, 4- and 6-connected chiral and anti-chiral honeycombs subject to uniaxial in-plane loading. Compos Sci Technol 70(7):1042–1048

    Article  Google Scholar 

  • Branka AC, Pieranski P, Wojciechowski KW (1982) Rotatory phase in a system of hard cyclic hexamers; an experimental modelling study. J Phys Chem Solids 43(9):817–818

    Article  Google Scholar 

  • Caddock BD, Evans KE (1989) Microporous materials with negative Poisson’s ratios I: microstructure and mechanical properties. J Phys D Appl Phys 22(12):1877–1882

    Article  Google Scholar 

  • Chen YJ, Scarpa F, Liu YJ, Leng JS (2013) Elasticity of anti-tetrachiral anisotropic lattices. Int J Solids Struct 50(6):996–1004

    Article  Google Scholar 

  • Chetcuti E, Ellul B, Manicaro E, Brincat JP, Attard D, Gatt R, Grima JN (2014) Modeling auxetic foams through semi-rigid rotating triangles. Phys Status Solidi B 251(2):297–306

    Article  Google Scholar 

  • Choi JB, Lakes RS (1992) Non-linear properties of polymer cellular materials with a negative Poisson’s ratio. J Mater Sci 27(19):5375–5381

    Article  Google Scholar 

  • Choi JB, Lakes RS (1995) Nonlinear analysis of the Poisson’s ratio of negative Poisson’s ratio foams. J Compos Mater 29(1):113–128

    Article  Google Scholar 

  • Evans KE, Nkansah MA, Hutchinson IJ, Rogers SC (1991) Molecular network design. Nature 353(6340):124

    Article  Google Scholar 

  • Gaspar N, Ren XJ, Smith CW, Grima JN, Evans KE (2005) Novel honeycombs with auxetic behavior. Acta Mater 53(8):2439–2445

    Article  Google Scholar 

  • Gaspar N, Smith CW, Alderson A, Grima JN, Evans KE (2011) A generalised three-dimensional tethered-nodule model for auxetic materials. J Mater Sci 46(2):372–384

    Article  Google Scholar 

  • Gibson LJ, Ashby MF (1988) Cellular solids: structure and properties. Pergamon Press, Oxford

    MATH  Google Scholar 

  • Grima JN, Evans KE (2000) Auxetic behavior from rotating squares. J Mater Sci Lett 19(17):1563–1565

    Article  Google Scholar 

  • Grima JN, Alderson A, Evans KE (2004) Negative Poisson’s ratios from rotating rectangles. Comput Methods Sci Technol 10(2):137–145

    Article  Google Scholar 

  • Grima JN, Williams JJ, Evans KE (2005) Networked calix[4]arene polymers with unusual mechanical properties. Chem Commun 32:4065–4067

    Article  Google Scholar 

  • Grima JN, Evans KE (2006) Auxetic behavior from rotating triangles. J Mater Sci 41(10):3193–3196

    Article  Google Scholar 

  • Grima JN, Zammit V, Gatt R, Alderson A, Evans KE (2007) Auxetic behavior from rotating semi-rigid units. Phys Status Solidi B 244(3):866–882

    Article  Google Scholar 

  • Grima JN, Farrugia PS, Caruana C, Gatt R, Attard D (2008) Auxetic behavior from stretching connected squares. J Mater Sci 43(17):5962–5971

    Article  Google Scholar 

  • Grima JN, Gatt R, Ellul B, Chetcuti E (2010) Auxetic behavior in non-crystalline materials having star or triangular shaped perforations. J Non-Cryst Solids 356(37–40):1980–1987

    Article  Google Scholar 

  • Grima JN, Manicaro E, Attard D (2011) Auxetic behavior from connected different-sized squares and rectangles. Proc R Soc A 467(2126):439–458

    Article  MATH  MathSciNet  Google Scholar 

  • Grima JN, Chetcuti E, Manicaro E, Attard D, Camilleri M, Gatt R, Evans KE (2012) On the auxetic properties of generic rotating rigid triangles. Proc R Soc A 468(2139):810–830

    Article  MathSciNet  Google Scholar 

  • Kopyt P, Damian R, Celuch M, Ciobanu R (2010) Dielectric properties of chiral honeycombs—modelling and experiment. Compos Sci Technol 70(7):1080–1088

    Article  Google Scholar 

  • Lim TC, Acharya UR (2009) An hexagonal array of fourfold interconnected hexagonal nodules for modeling auxetic microporous polymers: a comparison of 2D and 3D. J Mater Sci 44:4491-4494

    Google Scholar 

  • Lim TC, Alderson A, Alderson KL (2014) Experimental studies on the impact properties of auxetic materials. Phys Status Solidi B 251(2):307–313

    Article  Google Scholar 

  • Lorato A, Innocenti P, Scarpa F, Alderson A, Alderson KL, Zied KM, Ravirala N, Miller W, Smith CW, Evans KE (2010) The transverse elastic properties of chiral honeycombs. Compos Sci Technol 70(7):1057–1063

    Article  Google Scholar 

  • Michelis P, Spitas V (2010) Numerical and experimental analysis of a triangular auxetic core made of CFR-PEEK using the directionally reinforced integrated single-yarn (DIRIS) architecture. Compos Sci Technol 70(7):1064–1071

    Article  Google Scholar 

  • Masters IG, Evans KE (1996) Models for the elastic deformation of honeycombs. Compos Struct 35(4):403–422

    Article  Google Scholar 

  • Miller W, Smith CW, Scarpa F, Evans KE (2010) Flatwise buckling optimization of hexachiral and tetrachiral honeycombs. Compos Science Technol 70(7):1049–1056

    Article  Google Scholar 

  • Milton GW (1992) Composite materials with Poisson’s ratio close to -1. J Mech Phys Solids 40(5):1105–1137

    Article  MATH  MathSciNet  Google Scholar 

  • Nakamura S, Lakes RS (1995) Finite element analysis of Saint-Venant end effects in micropolar elastic solids. Eng Comput 12(6):571–587

    Article  MATH  Google Scholar 

  • Neale PJ, Alderson KL, Pickles AP, Evans KE (1993) Negative Poisson’s ratio of microporous polyethylene in compression. J Mater Sci Lett 12(19):1529–1532

    Google Scholar 

  • Pozniak AA, Smardzewski J, Wojciechowski KW (2013) Computer simulations of auxetic foams in two dimensions. Smart Mater Struct 22(8):084009

    Article  Google Scholar 

  • Pozniak AA, Wojciechowski KW (2014) Poisson’s ratio of rectangular anti 0-chiral structures with size dispersion of circular nodes. Phys Status Solidi B 251(2):367–374

    Article  Google Scholar 

  • Prall D, Lakes RS (1997) Properties of a chiral honeycomb with a Poisson’s ratio of -1. Int J Mech Sci 39(3):305–314

    Article  MATH  Google Scholar 

  • Ravirala N, Alderson A, Alderson KL, Davies PJ (2005) Auxetic polypropylene films. Polym Eng Sci 45(4):517–528

    Article  Google Scholar 

  • Ravirala N, Alderson A, Alderson KL (2007) Interlocking hexagon model for auxetic behavior. J Mater Sci 42(17):7433–7445

    Article  Google Scholar 

  • Rothenburg L, Berlin AA, Bathurst RJ (1991) Microstructure of isotropic materials with negative Poisson’s ratio. Nature 354(6353):470–472

    Article  Google Scholar 

  • Smith CW, Grima JN, Evans KE (2000) A novel mechanism for generating auxetic behavior in reticulated foams: missing rib foam model. Acta Mater 48(17):4349–4356

    Article  Google Scholar 

  • Spadoni A, Ruzzene M, Gonella S, Scarpa F (2009) Phononic properties of hexagonal chiral lattices. Wave Motion 46(7):435–450

    Article  MATH  MathSciNet  Google Scholar 

  • Spadoni A, Ruzzene M (2012) Elasto-static micro polar behavior of a chiral auxetic lattice. J Mech Phys Solids 60(1):156–171

    Article  Google Scholar 

  • Taylor CM, Smith CW, Miller W, Evans KE (2011) The effects of hierarchy on the in-plane elastic properties of honeycombs. Int J Solids Struct 48(9):1330–1339

    Article  MATH  Google Scholar 

  • Taylor M, Francesconi L, Gerendas M, Shanian A, Carson C, Bertoldi K (2013) Low porosity metallic periodic structures with negative Poisson’s ratio. Adv Mater 26(15):2365–2370

    Article  Google Scholar 

  • Wojciechowski KW (1987) Constant thermodynamic tension Monte-Carlo studies of elastic properties of a two-dimensional system of hard cyclic hexamers. Mol Phys 61(5):1247–1258

    Article  Google Scholar 

  • Wojciechowski KW (1989) Two-dimensional isotropic system with a negative Poisson ratio. Phys Lett A 137(1,2):60–64

    Article  Google Scholar 

  • Wojciechowski KW, Branka AC (1989) Negative Poisson ratio in a two-dimensional ‘‘isotropic’’ solid. Phys Rev A 40(12):7222–7225

    Article  Google Scholar 

  • Wojciechowski KW (2003) Remarks on “Poisson ratio beyond the Limits of the elasticity theory”. J Phys Soc Jpn 72(7):1819–1820

    Article  Google Scholar 

  • Yang DU, Huang FY (2001) Analysis of Poisson’s ratio for a micropolar elastic rectangular plate using finite element method. Eng Comput 18(7):1012–1030

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teik-Cheng Lim .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Lim, TC. (2015). Micromechanical Models for Auxetic Materials. In: Auxetic Materials and Structures. Engineering Materials. Springer, Singapore. https://doi.org/10.1007/978-981-287-275-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-287-275-3_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-287-274-6

  • Online ISBN: 978-981-287-275-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics