Skip to main content

Edge of the World: When Are Manifolds Metrisable?

  • Chapter
  • First Online:
Non-metrisable Manifolds
  • 875 Accesses

Abstract

This chapter might seem odd in that it lists a huge number of topological properties and connections between them. What it shows is that the requirement that a manifold be metrisable is extremely versatile. We list over 100 conditions each of which is equivalent to metrisability of a manifold. At one extreme, metrisability of a manifold implies that it may be embedded as a closed subset of some Euclidean space while at the other extreme knowing that every open cover of the form \(\{U_{\alpha }\ /\ {\alpha }<{\omega }_1\}\) with \(U_{\alpha }\subset U_{\beta }\) whenever \({\alpha }<{\beta }\) has an open refinement which is point countable on a dense subset is sufficient to guarantee that a manifold is metrisable. Space precludes giving full details of the proofs. Instead we give brief ideas of the proofs and refer the interested reader to original sources for complete proofs. The content of this chapter is taken from [21].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Addis, D.F., Gresham, J.H.: A class of infinite-dimensional spaces. Part I: Dimension theory and Alexandroff’s problem. Fund. Math. 101, 195–205 (1978)

    MATH  MathSciNet  Google Scholar 

  2. Arhangel’ski\(\breve{\rm {i}}\), A.V., Buzyakova, R.Z.: On linearly Lindelöf and strongly discretely Lindelöf spaces, Top. Proc. 23, 1–11 (Summer 1998)

    Google Scholar 

  3. Arhangel’ski\(\breve{\rm {i}}\), A.V., Choban, M.M.: Compactly metrizable spaces and a theorem on generalized strong \(\varSigma \)-spaces. Top. Appl. 160, 1168–1172 (2013)

    Google Scholar 

  4. Babinkostova, L.: Selective screenability game and covering dimension. Top. Proc. 29(1), 13–17 (2005)

    Google Scholar 

  5. Cao, J., Gauld, D., Greenwood, S., Mohamad, A.: Games and metrisability of manifolds. N. Z. J. Math. 37, 1–8 (2008)

    Google Scholar 

  6. Cao, J., Junnila, H.: When is a Volterra space Baire? Top. Appl. 154, 527–532 (2007)

    Google Scholar 

  7. Cao, J., Mohamad, A.: Metrizability, manifolds and hyperspace topologies. JP J. Geom. Topol. 14, 1–12 (2013)

    Google Scholar 

  8. Caserta, A., Di Maio, G., Kočinac, L.D.R., Meccariello, E.: Applications of k-covers II. Top. Appl. 153, 3277–3293 (2006)

    Google Scholar 

  9. Cohen, M.M.: Local homeomorphisms of Euclidean space onto arbitrary manifolds. Mich. J. Math. 12, 493–498 (1965)

    Google Scholar 

  10. Deo, S., Gauld, D.: Boundedly metacompact or finitistic spaces (to appear)

    Google Scholar 

  11. Di Maio, G., Kočinac, L.D.R., Meccariello, E.: Selection principles and hyperspace topologies. Top. Appl. 153, 912–923 (2005)

    Google Scholar 

  12. Dow, A., Zhou, J.: On subspaces of pseudoradial spaces. Proc. Amer. Math. Soc. 127, 1221–1230 (1999)

    Google Scholar 

  13. Fearnley, D.L.: Metrisation of Moore spaces and abstract topological manifolds. Bull. Aust. Math. Soc. 56, 395–401 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  14. Fell, J.: A Hausdorff topology for the closed subsets of a locally compact non-Hausdorff space. Proc. Amer. Math. Soc. 13, 472–476 (1962)

    Google Scholar 

  15. Feng, Z., Gartside, P.: Spaces with a finite family of basic functions. Bull. Lond. Math. Soc. 43, 26–32 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  16. Forster, O.: Lectures on Riemann Surfaces. GTM 81, Springer, New York (1981)

    Google Scholar 

  17. Gartside, P.M., Mohamad, A.M.: Cleavability of manifolds. Top. Proc. 23, 155–166 (1998)

    Google Scholar 

  18. Gartside, P.M., Mohamad, A.M.: Metrizability of manifolds by diagonal properties. Top. Proc. 24, 621–640 (1999)

    Google Scholar 

  19. Gauld, D.: A strongly hereditarily separable, nonmetrisable manifold. Top. Appl. 51, 221–228 (1993)

    Google Scholar 

  20. Gauld, D.: Covering properties and metrisation of manifolds. Top. Proc. 23, 127–140 (1998)

    Google Scholar 

  21. Gauld, D.: Metrisability of manifolds, a developing survey found at http://arxiv.com/abs/0910.0885

  22. Gauld, D.: Selections and metrisability of manifolds. Top. Appl. 160, 2473–2481 (2013)

    Google Scholar 

  23. Gauld, D.: Some properties close to Lindelöf (to appear)

    Google Scholar 

  24. Gauld, D., Greenwood, S.: Microbundles, manifolds and metrisability. Proc. Amer. Math. Soc. 128, 2801–2807 (2000)

    Google Scholar 

  25. Gauld, D., Greenwood, S., Piotrowski, Z.: On Volterra spaces III: topological operations. Top. Proc. 23, 167–182 (1998)

    Google Scholar 

  26. Gauld, D., Mynard, F.: Metrisability of manifolds in terms of function spaces. Houst. J. Math. 31, 199–214 (2005)

    MATH  MathSciNet  Google Scholar 

  27. Gauld, D., Vamanamurthy, M.K.: Covering properties and metrisation of manifolds 2. Top. Proc. 24, 173–185 (Summer 1999)

    Google Scholar 

  28. Gauld, D., van Mill, J.: Homeomorphism groups and metrisation of manifolds. N. Z. J. Math. 42, 37–43 (2012)

    MATH  MathSciNet  Google Scholar 

  29. Gruenhage, G.: Generalized metric spaces. In: Kunen, K., Vaughan, J. (eds.) Handbook of Set-Theoretic Topology, pp. 423–501. Elsevier, Amsterdam (1984)

    Chapter  Google Scholar 

  30. Gruenhage, G.: The story of a topological game. Rocky Mountain J. Math. 36, 1885–1914 (2006)

    Google Scholar 

  31. Gruenhage, G., Ma, D.K.: Baireness of \(C_k(X)\) for locally compact X. Top. Appl. 80, 131–139 (1997)

    Google Scholar 

  32. Heath, R.W., Lutzer, D.J., Zenor, P.L.: Monotonically normal spaces. Trans. Amer. Math. Soc. 178, 481–493 (1973)

    Google Scholar 

  33. Kechris, A.S.: Classical Descriptive Set Theory. Springer, New York (1995)

    Book  MATH  Google Scholar 

  34. Kister, J.M.: Microbundles are fibre bundles. Ann. Math. 2(80), 190–199 (1964)

    Article  MathSciNet  Google Scholar 

  35. Matveev, M.V.: Some questions on property (a). Q. A. Gen. Top. 15, 103–111 (1997)

    Google Scholar 

  36. Milnor, J.: Microbundles part I. Topology 3(Suppl. 1), 53–80 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  37. Mohamad, A.M.: Metrization and semimetrization theorems with applications to manifolds. Acta Math. Hung. 83(4), 383–394 (1999)

    Article  MathSciNet  Google Scholar 

  38. Nyikos, P.: Various smoothings of the long line and their tangent bundles. Adv. Math. 93, 129–213 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  39. Pears, A.R.: Dimension Theory of General Spaces. Cambridge University Press, Cambridge (1975)

    Google Scholar 

  40. Reed, G.M., Zenor, P.L.: A metrization theorem for normal Moore spaces. In: Stavrakas, N.M., Allen, K.R. (eds.) Studies in Topology, pp. 485–488. Academic Press, New York (1974)

    Google Scholar 

  41. Reed, G.M., Zenor, P.L.: Metrization of Moore spaces and generalized manifolds. Fund. Math. 91, 203–210 (1976)

    MATH  MathSciNet  Google Scholar 

  42. Scheepers, M.: Combinatorics of open covers I: Ramsey theory. Top. Appl. 69, 31–62 (1996)

    Google Scholar 

  43. Tkačenko, M.G.: Ob odnom svoistve bicompactov (On a property of compact spaces). Seminar po obshchei topologii (A Seminar on General Topology), pp. 149–156. Moscow State University P. H., Moscow (1981) (Russian)

    Google Scholar 

  44. Williams, S.W., Zhou, H.: Strong versions of normality. General topology and its applications. In: Proceedings of the 5th NE Conference, New York 1989. Lecture Notes in Pure and Applied Mathematics, vol. 134, pp. 379–389. Marcel Dekker, New York (1991)

    Google Scholar 

  45. Worrell Jr, J.M., Wicke, H.H.: Characterizations of developable topological spaces. Can. J. Math. 17, 820–830 (1965)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Gauld .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Gauld, D. (2014). Edge of the World: When Are Manifolds Metrisable?. In: Non-metrisable Manifolds. Springer, Singapore. https://doi.org/10.1007/978-981-287-257-9_2

Download citation

Publish with us

Policies and ethics