Skip to main content

Plasmonic Properties of Metallic Nanostructures, Two Dimensional Materials, and Their Composites

  • Chapter
  • First Online:
Applied Spectroscopy and the Science of Nanomaterials

Part of the book series: Progress in Optical Science and Photonics ((POSP,volume 2))

Abstract

The intense and highly tunable optical field enhancement provided by nanomaterials supporting plasmon resonances has diverse applications including biophotonics, terahertz spectroscopy, and subwavelength microscopy. This chapter compares plasmon resonance behavior and tunability in noble metal nanostructures with that of two dimensional and quasi-two dimensional materials including graphene, silicene, germanene, and the transition metal dichalcogenides. Plasmonic optical behavior and related advancements in two-dimensional materials functionalized by metallic nanostructures are discussed. Finally, possibilities for new directions for work on similar composite plasmonic systems are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Certain commercial equipment, instruments, or materials are identified in this paper in order to specify the experimental procedure adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the materials or equipment identified are necessarily the best available for the purpose.

References

  1. Ritchie RH (1957) Plasma losses by fast electrons in thin films. Phys Rev 106:874–881

    Article  Google Scholar 

  2. Nie S, Emory SR (1997) Probing single molecules and single nanoparticles by surface- enhanced Raman scattering. Science 275(5303):1102–1106

    Article  Google Scholar 

  3. Ozbay E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311(5758):189–193

    Article  Google Scholar 

  4. Liu N, Wei H, Li J, Wang Z, Tian X, Pan A, Xu H (2013) Plasmonic amplification with ultra-high optical gain at room temperature. Sci Rep 3:1967

    Google Scholar 

  5. Dionne JA, Atwater HA (2012) Plasmonics: Metal-worthy methods and materials in nanophotonics. MRS Bull 37(8):717–724

    Article  Google Scholar 

  6. Stockman M (2007) Criterion for negative refraction with low optical losses from a fundamental principle of causality. Phys Rev Lett 98:177404

    Article  Google Scholar 

  7. Kinsler P, McCall MW (2008) Causality-based criteria for a negative refractive index must be used with care. Phys Rev Lett 101(16):167401

    Article  Google Scholar 

  8. Dirdal C, Skaar J (2013) Negative refraction in causal media by evaluating polar paths for rational functions. J Opt Soc Am B: Opt Phys 30(2):370–376

    Article  Google Scholar 

  9. Boltasseva A, Atwater H (2011) Low-loss plasmonic metamaterials. Science 331(6015):290–291

    Article  Google Scholar 

  10. Rast L, Stanishevsky A (2005) Aggregated nanoparticle structures prepared by thermal decomposition of poly(vinyl)-N-pyrrolidone/Ag nanoparticle composite films. Appl Phys Lett 87

    Google Scholar 

  11. Kamat P (2002) J Phys Chem B. Photophysical, photochemical and photocatalytic aspects of metal nanoparticles. 106(32):7729–7744

    Google Scholar 

  12. Klar T, Perner M, Grosse S, Von Plessen G, Sprikl W, Feldmann J (1998) Surface-plasmon resonances in single metallic nanoparticles. Phys Rev Lett 80:4249

    Article  Google Scholar 

  13. Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107(3):668–677

    Article  Google Scholar 

  14. Draine BT, Flatau PJ (1994) Discrete dipole approximation for scattering calculations. J Opt Soc Am A: 11:1491–1499

    Article  Google Scholar 

  15. Draine, BT, Flatau, PJ (2012) User Guide to the Discrete Dipole Approximation Code DDSCAT 7.2. arXiv preprint arXiv: 1202.3424

    Google Scholar 

  16. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379

    Article  Google Scholar 

  17. Doyle WT, Agarwal A (1965) Optical Extinction of Metal Spheres. J Opt Soc Am 55:305–308

    Article  Google Scholar 

  18. Sherry LJ, Chang SH, Schatz GC, Van Duyne RP (2006) Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms. Nano Lett 6(9):2060–2065

    Article  Google Scholar 

  19. Chen S, Fan Z, Carroll DL (2002) Silver nanodisks: synthesis, characterization, and self-assembly. J Phys Chem B 106(42):10777:10781

    Google Scholar 

  20. Stanishevsky A, Williamson H, Yockell-Leviere H, Rast L, Ritcey AM (2005) Synthesis of complex shape gold nanoparticles in water-methanol mixtures. J Nanosci Nanotechnol 6(7):2013–2017

    Article  Google Scholar 

  21. Barnard AS (2012) Mapping the shape and phase of palladium nanocatalysts. Catal Sci Technol 2:1485–1492

    Article  Google Scholar 

  22. Schaefers S, Rast L, Stanishevsky A (2006) Electroless silver plating on spin-coated silver nanoparticle seed layers. Mater Lett 60(5):706–709

    Google Scholar 

  23. Bosman M, Ye E, Tan SF, Nijhuis CA, Yang JKW, Marty R, Mlayah A, Arbouet A, Girard C, Han MY (2013) Surface plasmon damping quantified with an electron nanoprobe. Nat Sci Rep 3:1312

    Google Scholar 

  24. Ritchie RH, Marusak AL (1966) The surface plasmon dispersion relation for an electron gas. Surf Sci 4(3):234–240

    Article  Google Scholar 

  25. Osma J, Garcia de Abajo FJ (1997) Surface effects in the energy loss of ions passing through a thin foil. Phys Rev A 56:2032–2040

    Article  Google Scholar 

  26. Yi GC (2012) Semiconductor nanostructures for optoelectronic devices: processing, characterization, and applications. Springer, Heidelberg

    Book  Google Scholar 

  27. Lambin Ph, Vigneron JP, Lucas AA (1985) Electron-energy-loss spectroscopy of multilayered materials: theoretical aspects and study of interface optical phonons in semiconductor superlattices. Phys Rev B 32:8203–8215

    Article  Google Scholar 

  28. Rast L, Tewary VK (2013) Stratified graphene/noble metal systems for low-loss plasmonics applications. Phys Rev B 87(4):045428

    Article  Google Scholar 

  29. Boragno C, Buatier de Mongeot F, Felici R, Robinson IK (2009) Critical thickness for the agglomeration of thin metal films. Phys Rev B 79:155443

    Article  Google Scholar 

  30. Rha JJ, Park JK (1997) Stability of the grain configurations of thin films—A model for agglomeration. J Appl Phys 82:1608

    Article  Google Scholar 

  31. Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9:205

    Article  Google Scholar 

  32. Dionne JA, Sweatlock LA, Atwater HA, Polman A (2005) Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model. Phys Rev B 72:075405

    Article  Google Scholar 

  33. Khurgin JB, Boltassevaa A (2012) Reflecting upon the losses in plasmonics and metamaterials. MRS Bull 37(8):768–779

    Google Scholar 

  34. Messina1 R, Hugonin JP, Greffet JJ, Marquier F, De Wilde Y, Belarouci A, Luc Frechette L, Cordier Y, Ben-Abdallah P (2013) Tuning the electromagnetic local density of states in graphene-covered systems via strong coupling with graphene plasmons. Phys Rev B 87:085421

    Google Scholar 

  35. Ghatak S, Nath Pal A, Ghosh A (2011) Nature of electronic states in atomically thin MoS2 field-effect transistors. ACS Nano 5(10):7707–7712

    Article  Google Scholar 

  36. Ni Z, Liu Q, Tang K, Zheng J, Zhou J, Qin R, Gao Z, Yu D, Lu J (2012) Tunable Bandgap in Silicene and Germanene. Nano Lett 12(1):113–118

    Article  Google Scholar 

  37. Berini P (1999) Plasmon polariton modes guided by a metal film of finite width. Opt Lett 24(15):1011–1013

    Article  Google Scholar 

  38. Koppens FHL, Chang DE, Garcia de Abajo FJ (2011) Graphene plasmonics: A platform for strong light-matter interaction. Nano Lett 11(8):3370–3377

    Article  Google Scholar 

  39. Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK (2005) Two-dimensional atomic crystals. PNAS 102(30):10451–10453

    Article  Google Scholar 

  40. Xue J, Sanchez-Yamagishi J, Bulmash D, Jacquod P, Deshpande A, Watanabe K, Taniguchi T, Jarillo-Herrero P, LeRoy BJ (2011) Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride. Nat Mater 10:282–285

    Article  Google Scholar 

  41. Li L, Wang X, Zhao X, Zhao M (2013) Moiré superstructures of silicene on hexagonal boron nitride: a first-principles study. Phys Lett A 377(38):2628–2632

    Article  Google Scholar 

  42. Kuisma M, Ojanen J, Enkovaara J, Rantala TT (2010) Kohn-Sham potential with discontinuity for band gap materials. Phys Rev B 82:115106

    Article  Google Scholar 

  43. Mortensen JJ, Hansen LB, Jacobsen KW (2005) Real-space grid implementation of the projector augmented wave method. Phys Rev B 71:035109

    Article  Google Scholar 

  44. Enkovaara J, Rostgaard C, Mortensen JJ et al (2010) Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method. J Phys: Condens Mater 22:253202

    Google Scholar 

  45. Walter M, Hakkinen H, Lehtovaara L, Puska M, Enkovaara J, Rostgaard C, Mortensen JJ (2008) Time-dependent density-functional theory in the projector augmented-wave method. J Chem Phys 128:244101

    Article  Google Scholar 

  46. Yan J, Mortensen JJ, Jacobsen KW, Thygesen KS (2011) Linear density response function in the projector augmented wave method: applications to solids, surfaces, and interfaces. Phys Rev B 83:245122

    Article  Google Scholar 

  47. Yan J, Jacobsen KW, Thygesen KS (2012) Optical properties of bulk semiconductors and graphene/boron nitride: The Bethe-Salpeter equation with derivative discontinuity-corrected density functional energies. Phys Rev B 86:045208

    Article  Google Scholar 

  48. Wei W, Dai Y, Huang B, Jacob B (2013) Many-body effects in silicene, silicane, germanene and germanane. Phys Chem Chem Phys 15:8789–8794

    Article  Google Scholar 

  49. Rozzi CA, Varsano D, Marini A, Gross EKU, Rubio A (2006) An exact Coulomb cutoff technique for supercell calculations. Phys Rev B 73:205119

    Article  Google Scholar 

  50. Wang QH, Kalantar-Zadeh K, Kis A, Coleman JN, Strano MS (2012) Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotech 7:699–712

    Article  Google Scholar 

  51. Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887):385–388

    Article  Google Scholar 

  52. Dereux A, Vigneron JP, Lambin Ph, Lucas AA (1988) Polaritons in semiconductor multilayered materials. Phys Rev B 38:5438–5452

    Article  Google Scholar 

  53. Economou EN (1969) Surface plasmons in thin films. Phys Rev 182(2):539–554

    Article  Google Scholar 

  54. Murarka SP, Eizenberg M, Sinha AK (2003) Interlayer Dielectrics for Semiconductor Technologies. Elsevier, Amsterdam

    Google Scholar 

  55. Yi GC (2012) Semiconductor Nanostructures for Optoelectronic Devices: Processing, Characterization, and Applications. Springer, Heidelberg, Dordrecht, London, New York

    Book  Google Scholar 

  56. Nikitin AY, Guinea F, Martin-Moreno L (2012) Resonant plasmonic effects in periodic graphene antidot arrays. Appl Phys Lett 101(15):151119

    Article  Google Scholar 

  57. Schultz MH, Jauho AP, Pedersen TG (2011) Screening in graphene antidot lattices. Phys Rev B 84:045428

    Google Scholar 

  58. Zhang YT, Li QM, Li YC, Zhang YY, Zhai F (2010) Band structures and transport properties of zigzag graphene nanoribbons with antidot arrays. J Phys: Condens Matter 22:315304

    Google Scholar 

  59. Pedersen JG, Pederson TG (2013) Hofstadter butterflies and magnetically induced band-gap quenching in graphene antidot lattices. Phys Rev B 87:235404

    Article  Google Scholar 

  60. Gotschy W, Vonmetz K, Leitner A, Aussenegg FR (1996) Thin films by regular patterns of metal nanoparticles: Tailoring the optical properties by nanodesign. Appl Phys B 63(4):381–384

    Article  Google Scholar 

  61. Hulteen JC, Treichel DA, Smith MT, Duval ML, Jensen TR, Van Duyne RP (1999) Nanosphere lithography: size-tunable silver nanoparticle and surface cluster arrays. J Phys Chem B 103:3854–3863

    Article  Google Scholar 

  62. Hamley IW (2003) Nanostructure fabrication using block copolymers. Nanotech 14(10):R39

    Article  Google Scholar 

  63. Chu H, Wang J, Ding L, Yuan D, Zhang Y, Liu J, Li Y (2009) Decoration of gold nanoparticles on surface-grown single-walled carbon nanotubes for detection of every nanotube by surface-enhanced raman spectroscopy. J Am Chem Soc 131(40):14310–14316

    Article  Google Scholar 

  64. Zedan AF, Moussa S, Terner J, Atkinson G, El-Shall MS (2012) Ultrasmall gold nanoparticles anchored to graphene and enhanced photothermal effects by laser irradiation of gold nanostructures in graphene oxide solutions. ACS Nano 7(1):627–636

    Article  Google Scholar 

  65. Shi Y, Huang JK, Jin L, Hsu YT, Yu SF, Li LJ, Yang HY (2013) Selective decoration of au nanoparticles on monolayer mos2 single crystals. Sci Rep 3:1839

    Google Scholar 

  66. Zaniewski AM, Schriver M, Lee JG, Crommie MF, Zettl A (2013) Electronic and optical properties of metal-nanoparticle filled graphene sandwiches. Appl Phys Lett 102:023108

    Article  Google Scholar 

  67. Lin J, Li H, Zhang H, Chen W (2013) Plasmonic enhancement of photocurrent in MoS2 field-effect-transistor. Appl Phys Lett 102(20):203109

    Article  Google Scholar 

  68. Materials Genome Initiative for Global Competitiveness http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf

  69. Eberlein T, Bangert U, Nair RR, Jones R, Gass M, Bleloch AL, Novoselov KS (2008) Plasmon spectroscopy of free-standing graphene films. Phys Rev B 77(23):223406

    Article  Google Scholar 

  70. Yang L, Deslippe J, Park CH, Cohen ML, Louie SG (2009) Excitonic effects on the optical response of graphene and bilayer graphene. Phys Rev Lett 103(18):186802

    Article  Google Scholar 

  71. Cudazzo P, Attaccalite C, Tokatly IV, Rubio A (2010) Strong charge-transfer excitonic effects and the Bose-Einstein exciton condensate in graphene. Phys Rev Lett 104(22):226804

    Article  Google Scholar 

  72. Bechstedt F, Matthes L, Gori P, Pulci O (2012) Infrared absorbance of silicene and germanene. Appl Phys Lett 100(26):261906

    Article  Google Scholar 

  73. Chinnathambi K, Chakrabarti A, Banerjee A, Deb SK (2012) Optical properties of graphene-like two dimensional silicene. arXiv preprint arXiv:1205.5099

    Google Scholar 

  74. Coleman J, Lotya M, O’Neill A et al (2011) Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331:568–571

    Article  Google Scholar 

  75. Johari P, Shenoy VB (2011) Tunable dielectric properties of transition metal dichalcogenides. ACS Nano 5(7):5903–5908

    Article  Google Scholar 

  76. Ma Y, Dai Y, Guo M, Yu L, Huang B (2013) Tunable electronic and dielectric behavior of GaS and GaSe monolayers. Phys Chem Chem Phys 15:7098–7105

    Article  Google Scholar 

  77. Lin X, Lin S, Xu Y et al (2013) Ab initio study of electronic and optical behavior of two-dimensional silicon carbide. J Mater Chem C 1:2131–2135

    Article  Google Scholar 

Download references

Acknowledgments

The author thanks Vinod K Tewary, Timothy J. Sullivan, Katie Rice, and Ann Chiaramonti Debay for enlightening and helpful discussions. This research was performed while the author held a National Research Council Research Associateship Award at the National Institute of Standards and Technology. This work represents an official contribution of the National Institute of Standards and Technology and is not subject to copyright in the USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lauren Rast .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Rast, L. (2015). Plasmonic Properties of Metallic Nanostructures, Two Dimensional Materials, and Their Composites. In: Misra, P. (eds) Applied Spectroscopy and the Science of Nanomaterials. Progress in Optical Science and Photonics, vol 2. Springer, Singapore. https://doi.org/10.1007/978-981-287-242-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-287-242-5_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-287-241-8

  • Online ISBN: 978-981-287-242-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics