Skip to main content

Adsorption of Gases in Nanomaterials: Theory and Simulations

  • Chapter
  • First Online:
Applied Spectroscopy and the Science of Nanomaterials

Part of the book series: Progress in Optical Science and Photonics ((POSP,volume 2))

  • 1659 Accesses

Abstract

Physical adsorption (physisorption) is the study of atoms or molecules weakly bound to material surfaces. Physisorption-related investigations raise critical questions concerning phase transitions, fractals, wetting transitions, two-dimensional superfluidity, and Van der Waals interactions. This chapter focuses on adsorption of gases (e.g. Ar, Kr, H2, CO2, and CH4) in nanomaterials, and in particular the authors describe equilibrium properties of the gases adsorbed in carbon nanotubes, graphene and Metal Organic Frameworks (MOFs). The adsorption potential used for developing the theoretical model for studying physisorption involves the summing of two-body interactions, and several important properties of adsorbates can be obtained via simulations, namely equilibrium properties, thermal characteristics, selectivity, wetting features, and structure and phase of the adsorbed monolayer. Applications of physisorption include the separation of cryogenic gases, their storage and their use as a surface characterization tool.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kim HK, Chan MHW (1984) Experimental determination of a two-dimensional liquid-vapor critical-point exponent. Phys Rev Lett 53:170–173

    Article  Google Scholar 

  2. Alexander S (1975) Lattice gas transition of He on grafoil-continuous transition with cubic terms. Phys Lett A 54:353

    Article  Google Scholar 

  3. Schick M (1980) Theory of helium monolayers. In: Dash JG, Ruvalds J (eds) Phase transitions in surface films. Plenum, New York, pp 65–113

    Google Scholar 

  4. Bretz M (1977) Ordered helium films on highly uniform graphite- finite size effects, critical parameters and 3-state Potts model. Phys Rev Lett 38:501–505

    Article  Google Scholar 

  5. Bruch LW, Cole MW, Zaremba E (2007) Physical adsorption: forces and phenomena. Dover, Mineola

    Google Scholar 

  6. Bruch LW, Diehl RD, Venables JA (2007) Pogress in the measurement and modeling of physisorbed layers. Rev Mod Phys 79:1381–1454

    Article  Google Scholar 

  7. Cole MW, Gatica SM, Kim H-Y, Lueking AD, Sircar S (2012) Gas adsorption in novel environments, including effects of pore relaxation. J Low Temp Phys 166:231–241

    Article  Google Scholar 

  8. Kim H-Y, Gatica SM, Stan G, Cole M (2009) Effects of substrate relaxation on adsorption in Pores. J Low Temp Phys 156:1–8

    Google Scholar 

  9. Gatica SM, Kim H-Y (2009) Condensation of fluids confined in non-rigid nanopores: with a little help from the substrate. J Low Temp Phys 157:382–394. published on line

    Google Scholar 

  10. Kowalczyk P, Ciach A, Neimar A (2008) Adsorption-induced deformation of microporous carbons: pore size distribution effect. Langmuir 24:6603

    Article  Google Scholar 

  11. Longhurst M, Quirke N (2007) Pressure dependence of the radial breathing mode of carbon nanotubes: the effect of fluid adsorption. Phys Rev Lett 98:145503

    Article  Google Scholar 

  12. Do D, Nicholson D, Do H (2008) Effects of adsorbent deformation on the adsorption of gases in slitlike graphitic pores: a computer simulation study. J Phys Chem C 112:14075

    Google Scholar 

  13. Ravikovitch P, Neimark A (2006) Density functional theory model of adsorption on amorphous and microporous silica materials. Langmuir 22:11171

    Article  Google Scholar 

  14. Gunther G, Schoen M (2009) Sorption strains and their consequences for capillary condensation in nanoconfinement. Molec Sim 35:138–150

    Article  Google Scholar 

  15. Fletcher AJ, Thomas KM, Rosseinsky MJ (2005) Flexibility in metal-organic framework materials: impact on sorption properties. J Solid State Chem 178:2491

    Article  Google Scholar 

  16. Greathouse JA, Kinnibrugh TL, Allendorf MD (2009) Adsorption and separation of noble gases by IRMOF-1: grand canonical monte carlo simulations. Ind Eng Chem Res 48:3425–3431

    Article  Google Scholar 

  17. Simonyan1 VV, Diep1 P, Johnson JK (1999) Molecular simulation of hydrogen adsorption in charged single-walled carbon nanotubes. Chem Phys 111:9778. http://dx.doi.org/10.1063/1.480313

  18. Maiga S, Medina M, Durodola OJ, Gatica SM (2013) Simulations of adsorption of CO2 in MOFs and analysis of hypothetical MOFs. J Low Temp Phys 172(3–4):274–288

    Article  Google Scholar 

  19. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) J Chem Phys 79:926

    Article  Google Scholar 

  20. Watts RO, McGee IJ (1976) Liquid state chemical physics. Wiley, New York

    Google Scholar 

  21. Maitland GC, Rigby M, Smith EB, Wakeham WA (1987) Intermolecular forces: their origin and determination. Clarendon, Oxford, pp 565–566. Tables A 3.1 and A 3.2

    Google Scholar 

  22. Calbi MM, Cole MW, Gatica SM, Bojan MJ, Stan G (2001) Condensed phases of gases inside nanotube bundles. Rev Modern Phys 73:857

    Article  Google Scholar 

  23. Gatica SM, Bojan MJ, Stan G, Cole MW (2001) Quasi-one and two-dimensional transitions of gases adsorbed on nanotube bundles. J Chem Phys 114:3765

    Article  Google Scholar 

  24. Gatica SM, Cole MW (2005) Capillary condensation in cylindrical nanopores. Phys Rev 72:041602

    Article  Google Scholar 

  25. Gatica SM, Li HI, Trasca RA, Cole MW, Diehl RD (2008) Xe adsorption on a C60 monolayer on Ag(111). Phys Rev B 77:045414

    Article  Google Scholar 

  26. Kim HY, Cole MW, Mbaye M, Gatica SM (2011) Phase behavior of Ar and Kr films on carbon nanotubes. J Phys Chem A 115:7249–7257 (J. P. Toennies Festschrift)

    Google Scholar 

  27. Rapaport DC (2004) The art of molecular dynamics simulation. Cambridge University Press, Cambridge

    Book  Google Scholar 

  28. Myers AL, Prausnitz JM (1965) Thermodynamics of mixed-gas adsorption. AIChE J 11:121

    Article  Google Scholar 

  29. Babarao R, Hu Z, Jiang J, Chempath S, Sandler SI (2007) Langmuir 23:659

    Article  Google Scholar 

  30. Krungleviciute V, Ziegler CA, Banjara SR, Yudasaka M, Iijima S, Migone AD (2013) Langmuir 29(30):9388–9397

    Google Scholar 

  31. Wang Z, Wei J, Morse P, Dash JG, Vilches OE, Cobden DH (2010) Phase transitions of adsorbed atoms on the surface of a carbon nanotube. Science 327:552–555

    Article  Google Scholar 

  32. Cahn JW (1977) Critical-point wetting. J Chem Phys 66:3667–3672

    Article  Google Scholar 

  33. Saam WF (2009) Wetting, capillary condensation and more. J Low Temp Phys 157:77–100

    Article  Google Scholar 

  34. Shi W, Johnson JK, Cole MW (2003) Wetting transitions of hydrogen and deuterium on the surface of alkali metals. Phys Rev B 68:125401-1–125401-7

    Google Scholar 

  35. Gatica SM, Cole MW (2009) To wet or not to wet: that is the question. J Low Temp Phys 157:111–136

    Article  Google Scholar 

  36. Gatica SM, Xiongce Z, Johnson JK, Cole MW (2004) Wetting transition of water on graphite and other surfaces. J Phys Chem B108:11704–11708

    Article  Google Scholar 

  37. Friedman SR, Khalil M, Taborek P (2013) Private communication. Phys Rev Lett 111:226101

    Google Scholar 

  38. Calbi MM, Cole MW, Gatica SM, Bojan MJ, Johnson JK (2008) Adsorbed gases in bundles of carbon nanotubes: theory and simulation. In: Bottani EJ, Tascón JMD (eds) Chapter 9 of adsorption by carbons. Elsevier Science Publishing, Amsterdam, pp 369–402. ISBN: 0-08-044464-4

    Google Scholar 

  39. Wang ZH, Wei J, Morse P, Dash JG, Vilches OE, Cobden DH (2010) Phase transitions of adsorbed atoms on the surface of a carbon nanotube. Science 327:552

    Article  Google Scholar 

  40. Carlos WE, Cole MW (1979) Anisotropic He–C pair interaction for a He atom near a graphite surface. Phys Rev Lett 43:697–700

    Article  Google Scholar 

  41. Carlos WE, Cole MW (1980) Interaction between a He atom and a graphite surface. Surf Sci 91:339–357

    Article  Google Scholar 

  42. Mbaye MT ( 2014) Ph.D. thesis. Howard University

    Google Scholar 

  43. Kim H-Y, Booth EC, Mbaye MT, Gatica SM (2014) Contribution of chirality to the adsorption of a Kr atom on a single wall carbon nanotube. J Low Temp Phys 175:590–603

    Google Scholar 

  44. Lee H-C, Vilches OE, Wang Z, Fredrickson E, Morse P, Roy R, Dzyubenko B, Cobden DH (2011) Kr and 4He adsorption on individual suspended single-walled carbon nanotubes. J Low Temp Phys. doi:10.1007/s10909-012-0642-3

  45. Kuchta B, Firlej L, Pfeifer P, Wexler C (2010) Numerical estimation of hydrogen storage limits in carbon based nanospaces. Carbon 48:223–231

    Article  Google Scholar 

  46. Palmer JC, Moore JD, Roussel TJ, Brennan JK, Gubbins KE (2011) Adsorptive behavior of CO2, CH4 and their mixtures in carbon nanospace: a molecular simulation study. Phys Chem Chem Phys 13:3985–3996

    Article  Google Scholar 

  47. Burress JW, Gadipelli S, Ford J, Simmons JM, Zhou W, Angew TY (2010) Graphene oxide framework materials suggested for hydrogen storage and carbon capture. Chem Int Ed 49:8902–8904

    Google Scholar 

  48. Srinivas G, Burress JW, Ford J, Yildirim T (2011) Porous graphene oxide frameworks: synthesis and gas sorption properties. J Mater Chem 21:11323

    Article  Google Scholar 

  49. Steele WA (1973) Surf Sci 36:317

    Article  Google Scholar 

  50. Vernov A, Steele WA (1992) The electrostatic field at a graphite surface and its effect on molecule: solid interactions. Langmuir 8:155–159

    Article  Google Scholar 

  51. Whitehouse DB, Buckingham AD (1993) Experimental determination of the atomic quadrupole moment of graphite. J Chem Soc Faraday Trans 89:1909–1913

    Article  Google Scholar 

  52. Zhao X, Johnson JK (2005) Mol Simul 31(1):1–10

    Google Scholar 

  53. Chang T-M, Dang LX (1996) J Chem Phys 104:6772

    Article  Google Scholar 

  54. Karapetian K, Jordan KD (2003) Properties of water clusters on a graphite sheet. Springer, New York, p 139

    Google Scholar 

  55. Yang RT (1997) Gas separation by adsorption processes. Chem Eng 1:352

    Google Scholar 

  56. Düren T, Snurr RQ (2004) Assessment of isoreticular metal-organic frameworks for adsorption separations: a molecular simulation study of methane/n-butane mixtures. J Phys Chem B 108:15703

    Google Scholar 

  57. Wang S, Yang Q, Zhong C (2008) Adsorption and separation of binary mixtures in a metal-organic framework Cu-BTC: a computational study. Sep Purif Technol 60:30

    Article  Google Scholar 

  58. Yang Q, Zhong C (2006) Molecular simulation of carbon dioxide/methane/hydrogen mixture adsorption in metal-organic frameworks. J Phys Chem B 110:17776

    Article  Google Scholar 

  59. Babarao R, Hu Z, Jiang J, Chempath S, Sandler SI (2007) Storage and Separation of CO2 and CH4 in Silicalite, C168 Schwarzite, and IRMOF-1: a comparative study from monte carlo simulations. Langmuir 23:659

    Article  Google Scholar 

  60. Krungleviciute V, Lask K, Migone AD (2008) Kinetics and equilibrium of gas adsorption on RPM1-Co and Cu-BTC metal-organic frameworks: potential for gas separation applications AIChE J 54:918

    Google Scholar 

  61. Krungleviciute V, Lask K, Heroux L, Migone AD, Lee J-Y, Li J, Skoulidas A (2007) Argon Adsorption on Cu3(Benzene-1,3,5-tricarboxylate)2(H2O)3 metal-organic framework. Langmuir 23:3106

    Article  Google Scholar 

  62. Garberoglio G (2007) Computer simulation of the adsorption of light gases in covalent organic frameworks. Langmuir 23:12154

    Article  Google Scholar 

  63. Walton KS, Millward AR, Dubbeldam D, Frost H, Low JJ, Yaghi OM, Snurr RQ (2008) Understanding inflections and steps in carbon dioxide adsorption isotherms in metal organic frameworks. J Am Chem Soc 130:406

    Article  Google Scholar 

  64. Dubbeldam D, Frost H, Walton KS, Snurr RQ (2007) Molecular simulation of adsorption sites of light gases in the metal-organic framework IRMOF-1. Fluid Phase Equilib 261:152

    Google Scholar 

  65. Keskin S, Sholl DS (2007) Screening metal-organic framework materials for membrane-based methane/carbon dioxide separations. J Phys Chem C 111:14055

    Article  Google Scholar 

  66. Greathouse JA, Kinnibrugh TL, Allendorf MD (2009) Adsorption and separation of noble gases by IRMOF-1: grand canonical monte carlo simulations. Ind Eng Chem Res 48:3425–3431

    Article  Google Scholar 

  67. Keskin S, Liu J, Rankin RB, Johnson JK, Sholl DS (2009) Progress, opportunities, and challenges for applying atomically detailed modeling to molecular adsorption and transport in metal-organic framework materials. Ind Eng Chem Res 48:2355

    Article  Google Scholar 

  68. Rowsell JLC, Yaghi OM (2004) Metal-organic frameworks: a new class of porous materials. Microporous Mesoporous Mater 73:3

    Article  Google Scholar 

  69. Mueller U, Schubert M, Teich F, Puetter H, Schierle-Arndt K, Pastre J (2006) Metal organic frameworks—prospective industrial applications. J Mater Chem 16:626

    Article  Google Scholar 

  70. Eddaoudi M, Kim J, Rosi N, Vodak D, Wachter J, O’Keeffe M, Yaghi OM (2002) Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295:479

    Article  Google Scholar 

  71. Bennet MJ, Smith JV (1968) Mater Res Bull 3:633

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful for the support of NSF DMR1006010, DMR1205608 and HRD1208880

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Gatica .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Mbaye, M.T., Maiga, S.M., Gatica, S.M. (2015). Adsorption of Gases in Nanomaterials: Theory and Simulations. In: Misra, P. (eds) Applied Spectroscopy and the Science of Nanomaterials. Progress in Optical Science and Photonics, vol 2. Springer, Singapore. https://doi.org/10.1007/978-981-287-242-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-287-242-5_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-287-241-8

  • Online ISBN: 978-981-287-242-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics