Skip to main content

The Versatile Roles of Graphene in Organic Photovoltaic Device Technology

  • Chapter
  • First Online:
Applied Spectroscopy and the Science of Nanomaterials

Part of the book series: Progress in Optical Science and Photonics ((POSP,volume 2))

Abstract

This chapter discusses the potential applications of graphene in the realization of efficient and stable organic optoelectronic devices, especially flexible solar cells. With the introduction of the prospects of graphene and functionalized graphene in modifying the performance characteristics of organic solar cells, the chapter evolves into assessing the prospects of realizing all carbon photovoltaic devices. The combination of unique, yet tunable, electrical and optical properties of graphene, makes it a highly sought after candidate for various technologically important applications in optoelectronics. Graphene has been identified as a suitable replacement for the highly expensive, brittle and less abundant indium tin oxide, as the transparent electrode material for optoelectronic device applications. The best graphene-based transparent conducting films show very low sheet resistance of 20 Ω/sq and high transparency around 90 % in the visible spectrum, making it a better choice compared to the commonly used transparent conductors including indium tin oxide (ITO) and zinc oxide (ZnO). The absence of energy band gap in graphene has originally limited its applications in optoelectronic devices. This problem has since been solved with the advent of graphene nanoribbons (GNRs) and functionalized graphenes. Functionalized graphenes and GNRs have extended the use of graphene as hole and electron transport layers in organic/polymer light emitting diodes and organic solar cells by the suitable tuning of the band gap energy. Blending dispersions of functionalised graphene with the active layers in photovoltaic devices has been found to enhance light absorption and enable carrier transport efficiently. Graphene layers with absorption in the entire visible region can be fine-tuned to be incorporated into the active layers of organic solar cells. Finally the synthesis conditions of GNRs and the functionalized graphenes can be optimized to achieve the required structural, optical and electrical characteristics for venturing into developing all carbon-based cost-effective organic solar cells with improved efficiency.

The pursuit of truth continues; it is enticing, when each giant leap brings in, new surprises.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firosov AA (2004) Science 306:666

    Article  Google Scholar 

  2. Wallace PR (1947) Phys Rev 71:622

    Article  Google Scholar 

  3. Ajiki H, Ando T (1993) J Phys Soc Jpn 62:1255

    Article  Google Scholar 

  4. Mermin ND, Wagner H (1966) Phys Rev Lett 17:1133

    Article  Google Scholar 

  5. Fasolino A, Los JH, Katsnelson MI (2007) Nat Mater 6:858

    Article  Google Scholar 

  6. Geim AK (2009) Science 3:1530

    Article  Google Scholar 

  7. Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK (2005) Proc Natl Acad Sci USA 102:10451

    Article  Google Scholar 

  8. Geim AK, Novoselov KS (2007) Nat Mater 6:183

    Article  Google Scholar 

  9. Meyer JC, Geim AK, Katsnelson MI, Novoselov KS, Booth TJ, Roth S (2007) Nature 446:60

    Article  Google Scholar 

  10. Blake P, Hill EW, Castro Neto AH, Novoselov KS, Jiang D, Yang R, Booth TJ, Geim AK (2007) Appl Phys Lett 91:063124

    Google Scholar 

  11. Meyer JC, Geim AK, Katsnelson MI, Novoselov KS, Booth TJ, Roth S (2007) Nature 446:60

    Article  Google Scholar 

  12. Geim AK, MacDonald AH (2007) Phys Today 60:35

    Article  Google Scholar 

  13. Avouris P (2010) Nano Lett 10:4285

    Article  Google Scholar 

  14. Wilson M (2006) Phys Today 59:21

    Google Scholar 

  15. Castro Neto AHF, Guinea N, Peres MR, Novoselov KS, Geim AK (2009) Rev Mod Phys 81:109

    Article  Google Scholar 

  16. Sharma SD, Shaffique A, Hwang EH, Rossi E (2011) Rev Mod Phys 83:407

    Google Scholar 

  17. Fuhrer MS, Lau CN, MacDonald AH (2010) MRS Bull 35:289

    Article  Google Scholar 

  18. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005) Nature 438:197

    Article  Google Scholar 

  19. Zhang Y, Tan Y-W, Stormer HL, Kim P (2005) Nature 438:201

    Article  Google Scholar 

  20. Chen JH, Jang C, Xiao SD, Ishigami M, Fuhrer MS (2008) Nat Nanotechnol 3:206

    Article  Google Scholar 

  21. Morozov SV, Novoselov KS, Katsnelson MI, Schedin F, Elias DC, Jaszczak JA, Geim AK (2008) Phys Rev Lett 100:016602

    Article  Google Scholar 

  22. Standley B, Bao W, Zhang H, Bruck J, Lau CN, Bockrath M (2008) Nano Lett 8:3345

    Article  Google Scholar 

  23. Lee C, Wei XD, Kysar JW, Hone J (2008) Science 321:385

    Article  Google Scholar 

  24. Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902

    Article  Google Scholar 

  25. Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ, Stauber T, Peres NMR, Geim AK (2008) Science 320:1308

    Article  Google Scholar 

  26. Sheehy DE, Schmalian J (2009) Phys Rev B 80:193411

    Article  Google Scholar 

  27. Berger C, Song ZM, Li XB, Wu XS, Brown N, Naud C, Mayo D, Li TB, Hass J, Marchenkov AN, Conrad EH, First PN, de Heer WA (2006) Science 312:1191

    Article  Google Scholar 

  28. Reina A, Jia XT, Ho J, Nezich D, Son HB, Bulovic V, Dresselhaus MS, Kong J (2009) Nano Lett 9:30

    Article  Google Scholar 

  29. Li XS, Cai WW, An JH, Kim S, Nah J, Yang DX, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee SK, Colombo L, Ruoff RS (2009) Science 324:1312

    Article  Google Scholar 

  30. Park J, Lee WH, Huh S, Sim SH, Kim SB, Cho K, Hong BH, Kim KS (2011) J Phys Chem Lett 2:841

    Article  Google Scholar 

  31. Park J, Jo SB, Yu YJ, Kim Y, Yang JW, Lee WH, Kim HH, Hong BH, Kim P, Cho K, Kim KS (2012) Adv Mater 24:407

    Article  Google Scholar 

  32. Sinitskii A, Dimiev A, Corley DA, Fursina AA, Kosynkin DV, Tour JM (2010) ACS Nano 4:1949

    Article  Google Scholar 

  33. Hossain MZ, Walsh MA, Hersam MC (2010) J Am Chem Soc 132:15399

    Article  Google Scholar 

  34. Nemes-Incze P, Osváth Z, Kamarás K, Biro LP (2008) Carbon 46:1435

    Article  Google Scholar 

  35. He H, Gao C (2010) Chem Mater 22:5054

    Article  Google Scholar 

  36. Liu Y, Zhou J, Zhang X, Liu Z, Wan X, Tian J, Wang T, Chen Y (2009) Carbon 47:3113

    Article  Google Scholar 

  37. An X, Butler TW, Washington M, Nayak SK, Kar S (2011) ACS Nano 5:1003

    Article  Google Scholar 

  38. Bai H, Xu Y, Zhao L, Li C, Shi G (2009) Chem Commun (13):1667 doi:10.1039/B821805F

  39. Liu H, Gao J, Xue M, Zhu N, Zhang M, Cao T (2009) Langmuir 25:12006

    Article  Google Scholar 

  40. Park S, Ruoff R S (2009) Nature Nanotech 4:217

    Google Scholar 

  41. Stankovich S, Piner RD, Chen X, Wu N, Nguyen ST, Ruoff RS (2006) J Mater Chem 16:155

    Google Scholar 

  42. Stankovich S, Dikin DA, Piner RD,Kohlhaas K A, Kleinhammes A, Jia Y, Wu Y, Nguyen S T, Ruoff R S (2007) Carbon 45:1558

    Google Scholar 

  43. Lotya M, Hernandez Y, King PJ, Smith RJ, Nicolosi V, Karlsson LS, Blighe FM, De S, Wang ZM, McGovern IT, Duesberg GS, Coleman JN (2009) J Am Chem Soc 131:3611

    Google Scholar 

  44. Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn J-H, Kim P, Choi J-Y, Hong BH (2009) Nature 457:706

    Google Scholar 

  45. Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee SK, Colombo L, Ruoff RS (2009) Science 324:5932

    Google Scholar 

  46. Park S, Ruoff RS (2009) Nat Nanotechnol 4:217

    Article  Google Scholar 

  47. Shao YY, Wang J, Engelhard M, Wang CM, Lin YH (2010) J Mater Chem 20:743

    Article  Google Scholar 

  48. Zhu YW, Stoller MD, Cai WW, Velamakanni A, Piner RD, Chen D, Ruoff RS (2010) ACS Nano 4:1227

    Google Scholar 

  49. Kroon R, Lenes M, Hummelen JC, Blom PWM, De Boer B (2008) Polymer Rev 48:531

    Google Scholar 

  50. Vanlaekea P, Swinnenb A, Haeldermansb I, Vanhoylandb G, Aernoutsa T, Cheynsa D, Deibela C, D’Haena J, Heremansa P, Poortmansa J, Manca JV (2006) Sol Energ Mat Sol 90:2150

    Article  Google Scholar 

  51. Yoon SM, Lou SJ, Loser S, Smith J, Chen LX, Facchetti A, Marks T (2012) Nano Lett 12:6315

    Google Scholar 

  52. Pagliaro M, Palmisano G, Ciriminna R (2008) Flexible solar cells. Wiley-VCH Verlag, GmbH & Co. KGaA, Weinheim, pp 85

    Book  Google Scholar 

  53. Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ (1995) Science 270:1789

    Article  Google Scholar 

  54. Liang Z, Gao R, Lan J-L, Wiranwetchayan O, Zhang Q, Li C, Cao G (2013) Sol Energ Mat Sol 117:34

    Google Scholar 

  55. Ahmadi M, Mirabbaszadeh K, Ketabch M (2013) Electron Mater Lett 9:729

    Article  Google Scholar 

  56. Kang Y, Park N-G, Kim D (2005) Appl Phys Lett 86:113101

    Article  Google Scholar 

  57. Wan X, Huang Y, Chen Y (2012) Acc Chem Res 45:598

    Article  Google Scholar 

  58. Wang H-X et al (2013) Small 9:1266

    Article  Google Scholar 

  59. Zhang Y, Zhang L, Zhou C (2013) Acc Chem Res 46:2329

    Article  Google Scholar 

  60. Choi Y-Y et al (2012) Sol Energ Mat Sol 96:281

    Article  Google Scholar 

  61. Park H et al (2010) Nanotechnology 21:505204 (6 p)

    Google Scholar 

  62. Hsu C-L (2012) ACS Nano 6:5031

    Article  Google Scholar 

  63. Kwon KC et al (2012) Adv Funct Mater 22:4724

    Article  Google Scholar 

  64. Park H et al (2012) Nano Lett 12:133

    Article  Google Scholar 

  65. Park H et al (2012) ACS Nano 6:6370

    Article  Google Scholar 

  66. Wang H-X (2013) Small 9:1266

    Article  Google Scholar 

  67. Georgakilas V et al (2012) Chem Rev 112:6156

    Article  Google Scholar 

  68. Yiming W et al (2013) J Phys Chem C 117:11968

    Article  Google Scholar 

  69. Ryu MS and Jang J (2011) Sol Energy Mat Sol 95(10):2893

    Article  Google Scholar 

  70. Yusoff ARBM et al (2012) Org Electron 13(11):2379

    Article  Google Scholar 

  71. Kwon KC et al (2013) Sol Energy Mat Sol 109:148

    Article  Google Scholar 

  72. Cox M et al (2011) Appl Phys Lett 98:123303

    Article  Google Scholar 

  73. Ryu S, Brus LE, Kim KS, Kim P, Yu Y-J, Zhao Y (2009) ACS Nano 9:3430

    Google Scholar 

  74. Lee DS, Krauss B, Patthey L, von Klitzing K, Smet JH, Starke U, Coletti C, Riedl C (2010) Phys Rev B 81:235401

    Article  Google Scholar 

  75. Rusu C, Brocks G, van den Brink J, Kelly PJ, Khomyakov PA, Giovannetti G (2009) Phys Rev B 79:195425

    Article  Google Scholar 

  76. Zhang D et al (2013) ACS Nano 7:1740

    Article  Google Scholar 

  77. Zhang Q, Wan X, Xing F, Huang L, Long G, Yi N, Ni1 W, Liu Z, Tian J, Chen Y (2013) Nano Res 6:478

    Google Scholar 

  78. Liu J, Xue Y, Gao Y, Yu D, Durstock M, Dai L (2012) Adv Mater 24:2227–2231

    Article  Google Scholar 

  79. Dai L (2013) Acc Chem Res 46:31–42

    Article  Google Scholar 

  80. Liu J, Xue Y, Dai L (2012) J Phys Chem Lett 3:1928

    Article  Google Scholar 

  81. Jeon I-Y, Shin Y-R, Sohn G-J, Choi H-J, Bae S-Y, Mahmood J, Jung S-M, Seo J-M, Kim M-J, Chang DW, Dai L, Baek J-B (2012) Proc Natl Acad Sci USA 109:5588

    Article  Google Scholar 

  82. Choi EK, Jeon IY, Bae SY, Lee HJ, Shin HS, Dai LM, Baek JB (2010) Chem Commun 46:6320

    Article  Google Scholar 

  83. Yu DS, Park K, Durstock M, Dai LM (2011) J Phys Chem Lett 2:1113

    Article  Google Scholar 

  84. Yang HB et al (2013) Sol Energy Mat Sol 117:214

    Article  Google Scholar 

  85. Liu Z et al (2012) Sol Energy Mat Sol 97:28

    Article  Google Scholar 

  86. Chen HY, Hou JH, Zhang SQ, Liang YY, Yang GW, Yang Y, Yu LP, Wu Y, Li G (2009) Nat Photonics 3:649

    Article  Google Scholar 

  87. You JB, Li XH, Xie FX, Sha WEI, Kwong JHW, Li G, Choy WCH, Yang Y (2012) Adv Energy Mater 2:1203

    Article  Google Scholar 

  88. Price SC, Stuart AC, Yang LQ, Zhou HX, You W (2011) J Am Chem Soc 133:4625

    Article  Google Scholar 

  89. Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ (1995) Science 270:1789

    Article  Google Scholar 

  90. Li G, Shrotriya V, Huang J, Yao Y, Moriarty T, Emery K, Yang Y (2005) Nat Mater 4:864

    Article  Google Scholar 

  91. Guenes S, Neugebauer H, Sariciftci NS (2007) Chem Rev 107:1324

    Article  Google Scholar 

  92. You J, Chen C-C, Hong Z, Yoshimura K, Ohya K, Run X, Shenglin Y, Gao J, Gang L, Yang Y (2013) Adv Mater 25:3973

    Article  Google Scholar 

  93. You JB, Dou LT, Yoshimura K, Kato T, Ohya K, Moriarty T, Emery K, Chen CC, Gao J, Li G, Yang Y (2013) Nat Commun 4:1446

    Article  Google Scholar 

  94. Tong SW, Wang Yu, Zheng Y, Man-Fai N, Loh KP (2011) Adv Funct Mater 21:4430

    Article  Google Scholar 

  95. Tanaka S, Mielczarek K, Ovalle-Robles R, Wang B, Hsu D, Zakhidov AA (2009) Appl Phys Lett 94:113506

    Article  Google Scholar 

  96. Mayer AC, Scully SR, Hardin BE, Rowell MW, McGehee MD (2007) Mater Today 10:28

    Article  Google Scholar 

  97. Sun Y, Welch GC, Leong WL,Takacs CJ, Bazan GC, Heeger AJ (2011) Nat Mater 11:44

    Google Scholar 

  98. Cox PA (1989) The elements: their origin, abundance, and distribution. Oxford University Press, New York

    Google Scholar 

  99. Premkumar T, Mezzenga R, Geckeler KE (2012) Small 8:1299

    Article  Google Scholar 

  100. Bae S, Kim H, Lee Y, Xu X, Park JS, Zheng Y, Balakrishnan J, Lei T, Ri Kim H, Song YI (210) Nat Nanotechnol 5:574

    Google Scholar 

  101. Lee CW, Han X, Chen F, Wei J, Chen Y, Chan-Park MB, Li LJ (2010) Adv Mater 22:1278

    Google Scholar 

  102. Lee C, Wei X, Kysar J, Hone W (2008) J Science 321:385

    Article  Google Scholar 

  103. Amanda SB, Phys J (2009) Condens Matter 21:144205

    Article  Google Scholar 

  104. Gao D, Helander MG, Wang ZB, Puzzo DP, Greiner MT, Lu ZH (2010) Adv Mater 22:5404

    Google Scholar 

  105. Zhu H, Wei J, Wang K, Wu D (2009) Sol Energy Mater Sol Cells 93:1461

    Article  Google Scholar 

  106. Tung VC, Huang JH, Tevis I, Kim F, Kim J, Chu CW, Stupp SI, Huang J (2011) J Am Chem Soc 133:4940

    Google Scholar 

  107. Tung VC, Huang JH, Kim J, Smith AJ, Chu CW, Huang J (2012) Energy Environ Sci 5:7810

    Google Scholar 

  108. Bernardi M, Lohrman J, Kumar PV, Kirkeminde A, Ferralis N, Grossman FC, Ren S (2012) ACS Nano 6(10):8896

    Google Scholar 

  109. Ramuz MP, Vosgueritchian M, Wei P, Wang C, Gao Y, Wu Y, Chen Y, Bao Z (2012) ACS Nano 6(11):10384

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayalekshmi Sankaran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Sankaran, J., Varma, S.J. (2015). The Versatile Roles of Graphene in Organic Photovoltaic Device Technology. In: Misra, P. (eds) Applied Spectroscopy and the Science of Nanomaterials. Progress in Optical Science and Photonics, vol 2. Springer, Singapore. https://doi.org/10.1007/978-981-287-242-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-287-242-5_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-287-241-8

  • Online ISBN: 978-981-287-242-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics