Skip to main content

Dependent Component Analysis Using Time-Frequency Analysis

  • Chapter
  • First Online:
Blind Source Separation

Part of the book series: SpringerBriefs in Electrical and Computer Engineering ((BRIEFSSIGNAL))

  • 974 Accesses

Abstract

Sparsity is an important property shared by many kinds of signals in numerous practical applications. These signals are sparse to some extent in different representation domains, such as time domain, frequency domain or time-frequency domain. In recent years, sparsity has been widely exploited to solve the problem of underdetermined blind source separation (UBSS), where the number of sources exceeds that of the observed mixtures. In fact, the sparsity assumption can also be satisfied by some dependent source signals. For these signals, it is possible to find a number of areas in some representation domains, where the source signals are not active, that is, signals are sparse in theses areas. The sparsity property provides a possibility for the blind separation of dependent sources. In this chapter, the sparsity of dependent sources in the time-frequency (TF) domain will be exploited to achieve blind source separation, where time-frequency analysis (TFA) will be used as a powerful tool for dependent component analysis (DCA). We will also show that for those non-sparse signals whose auto-source points and cross-source points do not overlap in the TF plane, they can be separated by using TFA if the underdetermined mixing system is known.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Gribonval, S. Lesage, A survey of sparse component analysis for blind source separation: principles, perspectives, and new challenges. Proc. ESANN 1, 323–330 (2006)

    Google Scholar 

  2. Y. Li, J. Wang, J.M. Zurada, Blind extraction of singularly mixed source signals. IEEE Trans. Neural Netw. 11(6), 1413–1422 (2000)

    Article  Google Scholar 

  3. Y. Li, J. Wang, Sequential blind extraction of instantaneously mixed sources. IEEE Trans. Signal Process. 50(5), 997–1006 (2002)

    Article  MathSciNet  Google Scholar 

  4. Y. Li, J. Wang, A. Cichocki, Blind source extraction from convolutive mixtures in ill-conditioned multi-input multi-output channels. IEEE Trans. Circuits Syst. I: Regulat Pap. 51(9), 1814–1822 (2004)

    Article  MathSciNet  Google Scholar 

  5. Y. Li, J. Wang, A network model for blind source extraction in various ill-conditioned cases. Neural Netw. 18(10), 1348–1356 (2005)

    Article  MATH  Google Scholar 

  6. P. Bofill, M. Zibulevsky, Underdetermined blind source separation using sparse representations. Signal Process. 81(11), 2353–2362 (2001)

    Article  MATH  Google Scholar 

  7. D. Peng, Y. Xiang, Underdetermined blind source separation based on relaxed sparsity condition of sources. IEEE Trans. Signal Process. 57(2), 809–814 (2009)

    Article  MathSciNet  Google Scholar 

  8. P. Georgiev, F. Theis, A. Cichocki, Sparse component analysis and blind source separation of underdetermined mixtures. IEEE Trans. Neural Netw. 16(4), 992–996 (2005)

    Article  Google Scholar 

  9. N. Linh-Trung, A. Aissa-El-Bey, K. Abed-Meraim, A. Belouchrani, Underdetermined blind source separation of non-disjoint nonstationary sources in time-frequency domain, in Proceedings of the 8th International Symposium Signal Processing Applications, pp. 46–49 (2005)

    Google Scholar 

  10. O. Yilmaz, S. Rickard, Blind separation of speech mixtures via time-frequency masking. IEEE Trans. Signal Process. 52(7), 1830–1847 (2004)

    Article  MathSciNet  Google Scholar 

  11. A. Jourjine, S. Rickard, O. Yilmaz, Blind separation of disjoint orthogonal signals: demixing N sources from 2 mixtures, in Proceedings of the 2000 IEEE International Conference Acoustics, Speech, and Signal Processing, vol. 5, pp. 2985–2988 (2000)

    Google Scholar 

  12. L.T. Nguyen, A. Belouchrain, K. Abed-Meraim, B. Boashash, Separating more sources than sensors using time-frequency distributions, in Proceedings of the 6th International Symposium Signal Processing and Its Application, pp. 583–586 (2001)

    Google Scholar 

  13. N. Linh-Trung, A. Belouchrani, K. Abed-Meraim, Separating more sources than sensors using time-frequency distributions. EURASIP J. Appl. Signal Process. 17, 2828–2847 (2005)

    Article  Google Scholar 

  14. Y. Zhang, M.G. Amin, Blind separation of nonstationary sources based on spatial time-frequency distributions. EURASIP J. Appl. Signal Process. 2006, 1–13 (2006)

    Google Scholar 

  15. D. Peng, Y. Xiang, H. Trinh, A new blind method for separating M+1 sources from M mixtures. Comput. Math. Appl. 60(7), 1829–1839 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. D. Peng, Y. Xiang, Underdetermined blind separation of non-sparse sources using spatial time-frequency distributions. Digit. Signal Process. 20(2), 581–596 (2010)

    Article  Google Scholar 

  17. L. Cohen, Time-Frequency Analysis (Prentice-Hall, NJ, 1995)

    Google Scholar 

  18. A. Aissa-El-Bey, N. Linh-Trung, K. Abed-Meraim, A. Belouchrani, Y. Grenier, Underdetermind blind separation of nondisjoint sources in the time-frequency domain. IEEE Trans. Signal Process. 55(3), 897–907 (2007)

    Article  MathSciNet  Google Scholar 

  19. A. Belouchrani, M.G. Amin, Blind source separation based on time-frequency signal representations. IEEE Trans. Signal Process. 46(11), 2888–2897 (1998)

    Article  Google Scholar 

  20. C. Wei, W.L. Woo, S.S. Dlay, Nonlinear underdetermined blind signal separation using Bayesian neural network approach. Digit. Signal Process. 17(1), 50–68 (2007)

    Article  Google Scholar 

  21. V. Zarzoso, Second-order criterion for blind source extraction. Electron. Lett. 44(22), 1327–1328 (2008)

    Article  Google Scholar 

  22. A. Ferreol, L. Albera, P. Chevalier, Fourth-order blind identification of underdetermined mixtures of sources (FOBIUM). IEEE Trans. Signal Process. 53(5), 1640–1653 (2005)

    Article  MathSciNet  Google Scholar 

  23. L.D. Lathauwer, J. Castaing, J.F. Cardoso, Fourth-order cumulant-based blind identification of underdetermined mixtures. IEEE Trans. Signal Process. 55(6), 2965–2973 (2007)

    Article  MathSciNet  Google Scholar 

  24. A.T. Cemgil, C. Fevotte, S.J. Godsill, Variational and stochastic inference for Bayesian source separation. Digit. Signal Process. 17(5), 891–913 (2007)

    Article  Google Scholar 

  25. Q. Lin, F. Yin, T. Mei, H. Liang, A blind source separation based method for speech encryption. IEEE Trans. Circuits Syst. I Regul. Pap. 53(6), 1320–1328 (2006)

    Article  MathSciNet  Google Scholar 

  26. Y. Deville, M. Benali, F. Abrard, Differential source separation for underdetermined instantaneous or convolutive mixtures: concept and algorithms. Signal Process. 84(10), 1759–1776 (2004)

    Article  MATH  Google Scholar 

  27. J. Thomas, Y. Deville, S. Hosseini, Differential fast fixed-point algorithms for underdetermined instantaneous and convolutive partial blind source separation. IEEE Trans. Signal Process. 55(7), 3717–3729 (2007)

    Article  MathSciNet  Google Scholar 

  28. D. Luengo, I. Santamaria, J. Ibanez, L. Vielva, C. Pantaleon, A fast blind SIMO channel identification algorithm for sparse sources. IEEE Signal Process. Lett. 10(5), 148–151 (2003)

    Article  Google Scholar 

  29. S. Xie, L. Yang, J.-M. Yang, G. Zhou, Y. Xiang, A time-frequency approach to underdetermined blind source separation. Neural Netw. Learn. Syst. 23(2), 306–316 (2012)

    Article  Google Scholar 

  30. P.S. Bradley, O.L. Mangasarian, k-plane clustering. J. Global Optim. 16(1), 23–32 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  31. R. Vidal, Subspace clustering. IEEE Signal Process. Mag. 28(2), 52–68 (2011)

    Article  Google Scholar 

  32. F. Abrard, Y. Deville, P. White, From blind source separation to blind source cancellation in the underdetermined case: a new approach based on time-frequency analysis, in Proceedings of the 3rd International Conference Independent Component Analysis Signal Separation, pp. 734–739 (2001)

    Google Scholar 

  33. F. Abrard, Y. Deville, Blind separation of dependent sources using the time-frequency ratio of mixtures approach, in Proceedings of the 7th International Symposium on Signal Processing Applications, pp. 1–4 (2003)

    Google Scholar 

  34. F. Abrard, Y. Deville, A time-frequency blind signal separation method applicable to underdetermined mixtures of dependent sources. Signal Process. 85(7), 1389–1403 (2005)

    Article  MATH  Google Scholar 

  35. A. Javanmard, P. Pad, M. Babaie-Zadeh, C. Jutten, Estimating the mixing matrix in underdetermined sparse component analysis (SCA) using consecutive independent component analysis (ICA), in Proceedings of the 16th European Signal Processing Conference, 2008

    Google Scholar 

  36. D.L. Donoho, M. Elad, Optimally sparse representation in general (non-orthogonal) dictionaries via \(\ell {1}\) minimization. Proc. Natl. Acad. Sci. 100, 2197–2202 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  37. M.S. Karoui, Y. Deville, S. Hosseini, A. Ouamri, Blind spatial unmixing of multispectral images: new methods combining sparse component analysis, clustering and non-negativity constraints. Pattern Recogn. 45, 4263–4278 (2012)

    Article  Google Scholar 

  38. J.F. Cardoso, A. Souloumiac, Blind beamforming for non-Gaussian signals. IEE Proc. F 140(6), 362–370 (1993)

    Google Scholar 

  39. G.F. Boudreaux-Bartels, T.W. Parks, Time-varying filtering and signal estimation using Wigner distribution synthesis techniques. IEEE Trans. Acoust. Speech Signal Process. ASSP–34(3), 442–451 (1986)

    Article  MathSciNet  Google Scholar 

  40. L. Sorber, M.V. Barel, L.D. Lathauwer, Tensorlab v1.0, Available online, Feb. 2013. http://esat.kuleuven.be/sista/tensorlab/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Xiang .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Xiang, Y., Peng, D., Yang, Z. (2015). Dependent Component Analysis Using Time-Frequency Analysis. In: Blind Source Separation. SpringerBriefs in Electrical and Computer Engineering(). Springer, Singapore. https://doi.org/10.1007/978-981-287-227-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-287-227-2_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-287-226-5

  • Online ISBN: 978-981-287-227-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics