Skip to main content

Dependent Component Analysis Exploiting Nonnegativity and/or Time-Domain Sparsity

  • Chapter
  • First Online:
Blind Source Separation

Part of the book series: SpringerBriefs in Electrical and Computer Engineering ((BRIEFSSIGNAL))

  • 969 Accesses

Abstract

It is well-known that many real-world signals are nonnegative [18], i.e., their sample values are either zero or greater than zero, such as images. Obviously, nonnegativity is different from the statistical information of sources. Depending on the kinds of dependent sources, the nonnegativity of the source signals could be exploited to carry out dependent component analysis (DCA), i.e., separate these unknown dependent sources from their observed mixtures. If the sources also have certain level of sparsity in time domain, then the nonnegativity and time-domain sparsity of the source signals can be jointly employed to achieve DCA. In this chapter, three classes of dependent component analysis methods are introduced and analyzed, which are the nonnegative sparse representation (NSR) based methods, the convex geometry analysis (CGA) based methods, and the nonnegative matrix factorization (NMF) based methods. These methods either exploit the nonnegativity of the sources or both the nonnegativity and time-domain sparsity of the sources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See http://biometrics.cse.msu.edu/fvc04db/index.html.

  2. 2.

    Available: http://www.hgimaging.com/PDF/Kruse-JPL2002-AVIRIS-Hyperion.pdf.

References

  1. A. Cichocki, R. Zdunek, A.H. Phan, S. Amari, Non-Negative Matrix and Tensor Factorization: Applications to Exploratory Multi-Way Data Analysis and Blind Source Separation (Wiley-Blackwell, Oxford, 2009)

    Book  Google Scholar 

  2. P. Sajda, S. Du, T. Brown, R. Stoyanova, D. Shungu, L.P.X. Mao, Nonnegative matrix factorization for rapid recovery of constituent spectra in magnetic resonance chemical shift imaging of the brain. IEEE Trans. Med. Imaging 23(12), 1453–1465 (2004)

    Article  Google Scholar 

  3. R.H.C. Gobinet, E. Perrin, Application of non-negative matrix factorization to fluorescence spectroscopy, in: Proceedings 12th European Signal Processing Conference, pp. 1095–1098 (2004)

    Google Scholar 

  4. Z. Yang, G. Zhou, S. Xie, S. Ding, J. Yang, J. Zhang, Blind spectral unmixing based on sparse nonnegative matrix factorization. IEEE Trans. Image Process. 20(4), 1112–1125 (2011)

    Article  MathSciNet  Google Scholar 

  5. T.H. Chan, W.K. Ma, C.Y. Chi, Y. Wang, A convex analysis framework for blind separation of non-negative sources. IEEE Trans. Signal Process. 56(10), 5120–5134 (2008)

    Article  MathSciNet  Google Scholar 

  6. T.H. Chan, C.Y. Chi, Y.M. Huang, W.K. Ma, A convex analysis-based minimum-volume enclosing simplex algorithm for hyperspectral unmixing. IEEE Trans. Signal Process. 57(11), 4418–4432 (2009)

    Article  MathSciNet  Google Scholar 

  7. W.S.B. Ouedraogo, A. Souloumiac, M. Jaïdane, C. Jutten, Non-negative blind source separation algorithm based on minimum aperture simplicial cone. IEEE Trans. Signal Process. 62(2), 376–389 (2014)

    Article  MathSciNet  Google Scholar 

  8. D.D. Lee, H.S. Seung, Learning of the parts of objects by non-negative matrix factorization. Nature 401(6755), 788–791 (1999)

    Article  Google Scholar 

  9. D. Donoho, M. Elad, V. Temlyakov, Stable recovery of sparse overcomplete representations in the presence of noise. IEEE Trans. Inf. Theory 52(1), 6–18 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. R. Chartrand, Exact reconstruction of sparse signals via nonconvex minimization. IEEE Signal Process. Lett. 14(10), 707–710 (2007)

    Article  Google Scholar 

  11. Y. Li, A. Cichocki, S. Amari, Analysis of sparse representation and blind source separation. Neural Comput. 16(6), 1193–1234 (2004)

    Article  MATH  Google Scholar 

  12. P.O. Hoyer, Non-negative matrix factorization with sparseness constraints. J. Mach. Learn. Res. 5, 1457–1469 (2004)

    MathSciNet  MATH  Google Scholar 

  13. Z. Yang, Y. Xiang, S. Xie, S. Ding, Y. Rong, Nonnegative blind source separation by sparse component analysis based on determinant measure. IEEE Trans. Neural Netw. Learn. Syst. 23(10), 1601–1610 (2012)

    Article  Google Scholar 

  14. G. Rath, C. Guillemot, J. Fuchs, Sparse approximations for joint source-channel coding, in Proc. IEEE 10th Workshop on Multimedia Signal Processing, 2008, pp. 481–485.

    Google Scholar 

  15. J. Karvanen, A. Cichocki, Measuring sparseness of noisy signals, in: Proceedings Fourth International Symposium on Independent Component Analysis and Blind Signal Separation, pp. 125–130 (2003)

    Google Scholar 

  16. S. Rickard, M. Fallon, The Gini index of speech, in: 38th Proc. Conf. Inf. Sci. Syst, Princeton, NJ, (2004)

    Google Scholar 

  17. B.A. Olshausen, D.J. Field, Sparse coding of sensory inputs. Curr. Opin. Neurobiol. 14(4), 481–487 (2004)

    Article  Google Scholar 

  18. B. Rao, K. Kreutz-Delgado, An affine scaling methodology for best basis selection. IEEE Trans. Signal Process. 47(1), 187–200 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. A. Bronstein, M. Bronstein, M. Zibulevsky, Y.Y. Zeevi, Sparse ICA for blind separation of transmitted and reflected images. Int. J. Imaging Syst. Technol. 15(1), 84–91 (2005)

    Article  Google Scholar 

  20. N. Hurley, S. Rickard, Comparing measures of sparsity. IEEE Trans. Inf. Theory 55(10), 4723–4741 (2009)

    Article  MathSciNet  Google Scholar 

  21. P. Georgiev, F. Theis, A. Cichocki, Sparse component analysis and blind source separation of underdetermined mixtures. IEEE Trans. Neural Netw. 16(4), 992–996 (2005)

    Article  Google Scholar 

  22. A.M. Bruckstein, M. Elad, M. Zibulevsky, On the uniqueness of nonnegative sparse solutions to underdetermined systems of equations. IEEE Trans. Inf. Theory 54(11), 4813–4820 (2008)

    Article  MathSciNet  Google Scholar 

  23. E. Candès, T. Tao, Decoding by linear programming. IEEE Trans. Inf. Theory 51(12), 4203–4215 (2005)

    Article  MATH  Google Scholar 

  24. D. Donoho, J. Tanner, Sparse nonnegative solution of underdetermined linear equations by linear programming. PNAS 102(27), 9446–9451 (2005)

    Article  MathSciNet  Google Scholar 

  25. F.Y. Wang, C.Y. Chi, T.H. Chan, Y. Wang, Nonnegative least-correlated component analysis for separation of dependent sources by volume maximization. IEEE Trans. Pattern Anal. Mach. Intell. 32(5), 875–888 (2010)

    Article  Google Scholar 

  26. J.M.P. Nascimento, J.M.B. Dias, Vertex component analysis: A fast algorithm to unmix hyperspectral data. IEEE Trans. Geosci. Remote Sens. 43(4), 898–910 (2005)

    Article  Google Scholar 

  27. Y. Wang, J. Xuan, R. Srikanchana, P.L. Choyke, Modeling and reconstruction of mixed functional and molecular patterns. Int. J. Biomed. Imaging 2006, 1–9 (2006)

    Google Scholar 

  28. Z. Yang, Y. Xiang, Y. Rong, S. Xie, Projection-pursuit-based method for blind separation of nonnegative sources. IEEE Trans. Neural Netw. Learn. Syst. 24(1), 47–57 (2013)

    Article  Google Scholar 

  29. L. Miao, H. Qi, Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization. IEEE Trans. Geosci. Remote Sens 45(3), 765–777 (2007)

    Article  Google Scholar 

  30. G. Zhou, Z. Yang, S. Xie, J. Yang, Online blind source separation using incremental nonnegative matrix factorization with volume constraint. IEEE Trans. Neural Netw. 22(4), 550–560 (2011)

    Article  MathSciNet  Google Scholar 

  31. S. Lopez, P. Horstrand, G.M. Callico, J.F. Lopez, R. Sarmiento, A novel architecture for hyperspectral endmember extraction by means of the modified vertex component analysis (MVCA) algorithm. IEEE. J. Sel. Top. Appl. Earth Obs. Remote Sens. 5(6), 1837–1848 (2012)

    Article  Google Scholar 

  32. G. Zhou, S. Xie, Z. Yang, J. Yang, Z. He, Minimum-volume-constrained nonnegative matrix factorization: enhanced ability of learning parts. IEEE Trans. Neural Netw. 22(10), 1626–1637 (2011)

    Article  Google Scholar 

  33. A. Cichocki, R. Zdunek, S.I. Amari, New algorithms for nonnegative matrix factorization in applications to blind source separation, in: Proceedings 2006 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 5479–5482 (2006)

    Google Scholar 

  34. D.D. Lee, H.S. Seung, Algorithms for non-negative matrix factorization. Adv. Neural Inf. Process. Syst. 13, 556–562 (2001)

    Google Scholar 

  35. H. Sawada, H. Kameoka, S. Araki, N. Ueda, Multichannel extensions of non-negative matrix factorization with complex-valued data. IEEE Trans. Audio, Speech, Lang. Process. 21(5), 971–982 (2013)

    Article  Google Scholar 

  36. A. Cichocki, H. Lee, Y.D. Kim, S. Choi, Non-negative matrix factorization with \(\alpha \)-divergence. Pattern Recognit. Lett. 29(9), 1433–1440 (2008)

    Article  Google Scholar 

  37. V.Y.F. Tan, C. Févotte, Automatic relevance determination in nonnegative matrix factorization with the \(\beta \)-divergence. IEEE Trans. Pattern Anal. Mach. Intell. 35(7), 1592–1605 (2013)

    Article  Google Scholar 

  38. A. Cichocki, S. Cruces, S. Amari, Generalized alpha-beta divergences and their application to robust nonnegative matrix factorization. Entropy 13, 134–170 (2011)

    Article  Google Scholar 

  39. V.P. Pauca, J. Piper, R.J. Plemmons, Nonnegative matrix factorization for spectral data analysis. Linear Algebra Appl. 416(1), 29–47 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  40. A. Huck, M. Guillaume, J. Blanc-Talon, Minimum dispersion constrained nonnegative matrix factorization to unmix hyperspectral data. IEEE Trans. Geosci. Remote Sens. 48(6), 2590–2612 (2010)

    Article  Google Scholar 

  41. T. Virtanen, Monaural sound source separation by nonnegative matrix factorization with temporal continuity and sparseness criteria. IEEE Trans. Audio, Speech, Lang. Process. 15(3), 1066–1074 (2007)

    Article  Google Scholar 

  42. Y. Zhang, Y. Fang, A NMF algorithm for blind separation of uncorrelated signals, in: Proceedings 2007 IEEE International Conference on Wavelet Analysis and Pattern Recognition, November 2–4, Beijing, China, pp. 999–1003 (2007)

    Google Scholar 

  43. S. Amari, Natural gradient works efficiently in learning. Neural Comput. 10(2), 251–276 (1998)

    Article  MathSciNet  Google Scholar 

  44. A. Cichocki, S. Amari, Adaptive Blind Signal and Image Processing: Learning Algorithms and Applications (Wiley, New York, 2003)

    Google Scholar 

  45. J. Rapin, J. Bobin, A. Larue, J.-L. Starck, Sparse and non-negative BSS for noisy data. IEEE Trans. Signal Process. 61(22), 5620–5632 (2013)

    Article  MathSciNet  Google Scholar 

  46. C. Boutsidis, E. Gallopoulos, SVD based initialization: a head start for nonnegative matrix factorization. Pattern Recogn. 41(4), 1350–1362 (2008)

    Article  MATH  Google Scholar 

  47. S. Wild, J. Curry, A. Dougherty, Improving non-negative matrix factorizations through structured initialization. Pattern Recogn. 37(11), 2217–2232 (2004)

    Article  Google Scholar 

  48. Z. Zheng, J. Yang, Y. Zhu, Initialization enhancer for non-negative matrix factorization. Eng. Appl. Artif. Intell. 20(1), 101–110 (2007)

    Article  Google Scholar 

  49. C.-J. Lin, On the convergence of multiplicative update algorithms for nonnegative matrix factorization. IEEE Trans. Neural Netw. 18(6), 1589–1596 (2007)

    Article  Google Scholar 

  50. S. Yang, Z. Yi, Convergence analysis of non-negative matrix factorization for BSS algorithm. Neural Process. Lett. 31(1), 45–64 (2010)

    Article  Google Scholar 

  51. R. Badeau, N. Bertin, E. Vincent, Stability analysis of multiplicative update algorithms and application to nonnegative matrix factorization. IEEE Trans. Neural Netw. 21(12), 1869–1881 (2010)

    Article  Google Scholar 

  52. K. Huang, N.D. Sidiropoulos, A. Swami, Non-negative matrix factorization revisited: uniqueness and algorithm for symmetric decomposition. IEEE Trans. Signal Process. 62(1), 211–224 (2014)

    Article  MathSciNet  Google Scholar 

  53. D.L. Donoho, V.C. Stodden, When does non-negative matrix factorization give a correct decomposition into parts? Adv. Neural Inf. Process. Syst. 16, 1141–1148 (2003)

    Google Scholar 

  54. H. Laurberg, M.G. Christensen, M.D. Plumbley, L.K. Hansen, S.H. Jensen, Theorems on positive data: on the uniqueness of NMF. Comput. Intell. Neurosci. 2008, 1–9 (2008)

    Article  Google Scholar 

  55. R. Schachtner, G. Pöppel, E.W. Lang, Towards unique solutions of non-negative matrix factorization problems by a determinant criterion. Digit. Signal Process. 21(4), 528–534 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Xiang .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Xiang, Y., Peng, D., Yang, Z. (2015). Dependent Component Analysis Exploiting Nonnegativity and/or Time-Domain Sparsity. In: Blind Source Separation. SpringerBriefs in Electrical and Computer Engineering(). Springer, Singapore. https://doi.org/10.1007/978-981-287-227-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-287-227-2_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-287-226-5

  • Online ISBN: 978-981-287-227-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics