Skip to main content

Introduction of Fiber Waveguide and Soliton Signals Used to Enhance the Communication Security

  • Chapter
  • First Online:
Soliton Coding for Secured Optical Communication Link

Abstract

J.J. Thomson in 1893 proposed first waveguide, where it was experimentally verified by O.J. Lodge in 1894. Analysis of the propagating modes was executed mathematically by Lord Rayleigh in 1897 within a hollow metal cylinder. In April 1957, the scientists tried to achieve maser-like amplification of visible light. In November of 1957, Gordon Gould, an American physicist (credited with the invention of the laser) could make an appropriate optical resonator by using two mirrors in the form of a Fabry-Perot interferometer. Unlike other designs, this new design would produce a narrow, coherent, intense beam. The gain medium could easily be optically pumped to achieve necessary population inversion. He also considered pumping of the medium by atomic-level collisions, and expected many of the potential uses of such a device [1]. Laser has a wide range of application including lidar, ladar, and communications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hammond B et al (2002) Integrated wavelength locker for tunable laser applications. IEEE

    Google Scholar 

  2. Snyder AW, Love JD (1983) Optical waveguide theory, vol 190. Springer

    Google Scholar 

  3. Hecht J (2010) Short history of laser development. Opt Eng 49:091002

    Article  Google Scholar 

  4. Abdullaev F, Garnier J (2005) Optical solitons in random media. Prog Opt 48:35–106

    Article  Google Scholar 

  5. Chiao RY, Garmire E, Townes C (1964) Self-trapping of optical beams. Phys Rev Lett 13(15):479

    Article  Google Scholar 

  6. Narahara K, Nakagawa S (2010) Nonlinear traveling-wave field effect transistors for amplification of short electrical pulses. IEICE Electron Express 7(16):1188–1194

    Article  Google Scholar 

  7. Sander J, Hutter K (1991) On the development of the theory of the solitary wave. A historical essay. Acta Mech 86(1):111–152

    Article  MATH  MathSciNet  Google Scholar 

  8. Israwi S (2010) Variable depth KdV equations and generalizations to more nonlinear regimes. ESAIM Math Model Numer Anal 44(02):347–370

    Article  MATH  MathSciNet  Google Scholar 

  9. El G, Grimshaw R, Smyth N (2009) Transcritical shallow-water flow past topography: finite-amplitude theory. J Fluid Mech 640:187–214

    Article  MATH  MathSciNet  Google Scholar 

  10. Hasegawa A (2002) Optical solitons in fibers for communication systems. Opt Photonics News 13(2):33–37

    Article  Google Scholar 

  11. Maimistov AI (2010) Solitons in nonlinear optics. Quantum Electron 40:756

    Article  Google Scholar 

  12. Zhang XF, He WQ, Zhang P (2011) Controllable optical solitons in optical fiber system with distributed coefficients. Commun Theor Phys 55:681

    Article  MATH  Google Scholar 

  13. Wise FW (2001) Spatiotemporal solitons in quadratic nonlinear media. Pramana 57(5):1129–1138

    Article  Google Scholar 

  14. Mollenauer L, Smith K (1988) Demonstration of soliton transmission over more than 4,000 km in fiber with loss periodically compensated by Raman gain. Opt Lett 13(8):675–677

    Article  Google Scholar 

  15. Stratmann M, Mitschke F (2005) Chains of temporal dark solitons in dispersion-managed fiber. Phys Rev E Stat Nonlin Soft Matter Phys 72(6 Pt 2):066616

    Google Scholar 

  16. Fischer R et al (2006) Observation of spatial shift in interaction of dark nonlocal solitons. IEEE

    Google Scholar 

  17. Stegeman GI, Segev M (1999) Optical spatial solitons and their interactions: universality and diversity. Science 286(5444):1518–1523

    Article  Google Scholar 

  18. Schneider G (2011) Justification of the NLS approximation for the KdV equation using the Miura transformation. Adv Math Phys

    Google Scholar 

  19. Ginzburg VL (1955) On the theory of superconductivity. Il Nuovo Cimento (1955–1965) 2(6):1234–1250

    Google Scholar 

  20. Carter JD, Contreras CC (2008) Stability of plane-wave solutions of a dissipative generalization of the nonlinear Schrödinger equation. Physica D 237(24):3292–3296

    Article  MATH  MathSciNet  Google Scholar 

  21. Gross EP (1963) Hydrodynamics of a superfluid condensate. J Math Phys 4:195

    Article  Google Scholar 

  22. Zakharov V (1967) On instability of light self-focusing. Zh Eksp Teor Fiz 53:1743–1745

    Google Scholar 

  23. Benney D, Newell A (1967) The propagation of nonlinear wave envelopes. J Math Phys 46(2):133–139

    MATH  MathSciNet  Google Scholar 

  24. Hasegawa A, Tappert F (1973) Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion. Appl Phys Lett 23(3):142–144

    Article  Google Scholar 

  25. Hasegawa A, Tappert F (1973) Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. II. Normal dispersion. Appl Phys Lett 23:171

    Article  Google Scholar 

  26. Mollenauer LF, Stolen RH, Gordon JP (1980) Experimental observation of picosecond pulse narrowing and solitons in optical fibers. Phys Rev Lett 45(13):1095–1098

    Article  Google Scholar 

  27. Little BE et al (1997) Microring resonator channel dropping filters. J Lightwave Technol 15(6):998–1005

    Article  Google Scholar 

  28. Daldosso N, Pavesi L (2009) Nanosilicon photonics. Laser Photonics Rev 3(6):508–534

    Article  Google Scholar 

  29. Liang D et al (2011) Hybrid silicon ring lasers

    Google Scholar 

  30. Absil P et al (2000) Wavelength conversion in GaAs micro-ring resonators. Opt Lett 25(8):554–556

    Article  Google Scholar 

  31. Suchat S, Khunnam W, Yupapin PP (2007) Quantum key distribution via an optical wireless communication link for telephone networks. Opt Eng 46:100502

    Article  Google Scholar 

  32. Yupapin PP, Chunpang P (2009) A quantum-chaotic encoding system using an erbium-doped fiber amplifier in a fiber ring resonator. Optik-Int J Light Electron Opt 120(18):976–979

    Article  Google Scholar 

  33. Kues M et al (2009) Nonlinear dynamics of femtosecond supercontinuum generation with feedback. Opt Express 17(18):15827–15841

    Article  Google Scholar 

  34. Thongmee S, Yupapin P (2010) Chaotic soliton switching generation using a nonlinear micro ring resonator for secure packet switching use. Optik-Int J Light Electron Opt 121(3):281–285

    Article  Google Scholar 

  35. Mitatha S et al (2010) High-capacity and security packet switching using the nonlinear effects in micro ring resonators. Optik-Int J Light Electron Opt 121(2):159–167

    Article  Google Scholar 

  36. Mattle K et al (1996) Dense coding in experimental quantum communication. Phys Rev Lett 76(25):4656

    Article  Google Scholar 

  37. Pongwongtragull P, Mitatha S, Yupapin P (2010) A simultaneous generation of QKD and QDC via optical memory array for distributed network security. Optik-Int J Light Electron Opt 121(23):2137–2139

    Article  Google Scholar 

  38. Siririth W et al (2010) A novel temporal dark-bright solitons conversion system via an add/drop filter for signal security use. Optik-Int J Light Electron Opt 121(21):1955–1958

    Article  Google Scholar 

  39. Sarapat K, Pornsuwancharoen N, Yupapin P (2010) Polarized soliton pulses generation using nonlinear micro ring resonators for multi-and long distance links. Optik-Int J Light Electron Opt 121(6):553–558

    Article  Google Scholar 

  40. Srimuk P, Mitatha S, Yupapin PP (2010) Novel CCTV security camera system using DWDM wavelength enhancement. Procedia-Soc Behav Sci 2(1):79–83

    Article  Google Scholar 

  41. Juleang P et al (2011) Public key suppression and recovery using a PANDA ring resonator for high security communication. Opt Eng 50:035002

    Article  Google Scholar 

  42. Dunmeekeaw U et al (2012) A new technique generation ghost-signal by microring resonator for 1.3 μm security communication. Procedia Eng 32:516–521

    Article  Google Scholar 

  43. Juleang P et al (2012) Highly secured optical communication by optical key and identification address. Optik-Int J Light Electron Opt

    Google Scholar 

  44. Thammawongsa N et al (2012) Novel nano-antenna system design using photonic spin in a panda ring resonator. Prog Electromagnet Res 31:75–87

    Article  Google Scholar 

  45. Tunsiri S et al (2012) Optical-quantum security using dark-bright soliton conversion in a ring resonator system. Procedia Eng 32:475–481

    Article  Google Scholar 

  46. Amiri IS et al (2014) Chaotic carrier signal generation and quantum transmission along fiber optics communication using integrated ring resonators. Quantum Matter

    Google Scholar 

  47. Alavi SE et al (2013) Chaotic signal generation and trapping using an optical transmission link. Life Sci J 10(9s):186–192

    Google Scholar 

  48. Amiri IS et al (2012) Generation of quantum photon information using extremely narrow optical tweezers for computer network communication. GSTF J Comput (joc) 2(1)

    Google Scholar 

  49. Teeka C et al (2011) ASK-to-PSK generation based on nonlinear microring resonators coupled to One MZI Arm. AIP Conf Proc 1341(1):221–223

    Article  Google Scholar 

  50. Ali J et al (2010) Dark and bright soliton trapping using NMRR. ICEM2010: Legend Hotel, Kuala Lumpur, Malaysia

    Google Scholar 

  51. Sanati P et al. (2013) Femtosecond pulse generation using microring resonators for eye nano surgery. Nanosci Nanotechnol Lett 6

    Google Scholar 

  52. Amiri IS, Ali J (2013) Optical buffer application used for tissue surgery using direct interaction of nano optical tweezers with nano cells. Quantum Matter 2(6):484–488

    Article  Google Scholar 

  53. Shahidinejad A. et al (2012) Network system engineering by controlling the chaotic signals using silicon micro ring resonator. In: Computer and communication engineering (ICCCE) Conference. IEEE Explore, Malaysia

    Google Scholar 

  54. Amiri IS, Ali J (2013) Data signal processing via a Manchester coding-decoding method using chaotic signals generated by a PANDA ring resonator. Chin Opt Lett 11(4):041901–041904

    Article  Google Scholar 

  55. Gifany D et al (2013) Logic codes generation and transmission using an encoding-decoding system. Int J Adv Eng Technol (IJAET) 5(2):37–45

    Google Scholar 

  56. Amiri IS et al (2012) Digital binary codes transmission via TDMA networks communication system using dark and bright optical soliton. GSTF J Comput (JoC) 2(1):12

    Google Scholar 

  57. Kouhnavard M et al (2010) QKD via a quantum wavelength router using spatial soliton. AIP Conf Proc 1347:210–216

    Google Scholar 

  58. Ali J et al (2010) Quantum internet via a quantum processor. In: International conference on photonics 2010 (ICP 2010), Langkawi, Malaysia

    Google Scholar 

  59. Shahidinejad A et al (2014) Quantum cryptography coding system for optical wireless communication. J Optoelectron Adv Mater

    Google Scholar 

  60. Ali J et al (2010) Quantum signal processing via an optical potential well. In: International conference on enabling science and technology, Nanotech Malaysia, Kuala Lumpur, Malaysia

    Google Scholar 

  61. Amiri IS, Ali J (2014) Generating highly dark-bright solitons by gaussian beam propagation in a PANDA ring resonator. J Comput Theor Nanosci (CTN) 11(4):1–8

    Google Scholar 

  62. Ali J et al (2010) Generation of tunable dynamic tweezers using dark-bright collision. In: International conference, ICAMN, Prince Hotel, Kuala Lumpur, Malaysia

    Google Scholar 

  63. Afroozeh A, Amiri IS, Zeinalinezhad A (2014) Micro ring resonators and applications. In: Jian A (ed) LAP LAMBERT Academic Publishing, Saarbrücken, Germany

    Google Scholar 

  64. Amiri IS et al (2012) Quantum entanglement using multi dark soliton correlation for multivariable quantum router. In: Moran AM (ed) Quantum entanglement. Nova Science Publisher, New York, pp 111–122

    Google Scholar 

  65. Amiri IS et al (2012) secured transportation of quantum codes using integrated PANDA-Add/drop and TDMA systems. Int J Eng Res Technol (IJERT) 1(5)

    Google Scholar 

  66. Amiri IS et al (2014) Quantum transmission of optical Tweezers via fiber optic using half-panda system. Life Sci J 10(12s):391–400

    MathSciNet  Google Scholar 

  67. Amiri IS et al (2013) Optical quantum transmitter with finesse of 30 at 800-nm central wavelength using microring resonators. Opt Quant Electron 45(10):1095–1105

    Article  Google Scholar 

  68. Afroozeh A et al (2010) Optical memory time using multi bright soliton. In: International conference on experimental mechanics (ICEM), Kuala Lumpur, Malaysia

    Google Scholar 

  69. Ali J et al (2010) Proposed molecule transporter system for Qubits generation. In: International conference on enabling science and technology, Nanotech Malaysia, Malaysia

    Google Scholar 

  70. Shojaei AA, Amiri IS (2011) Soliton for radio wave generation. In: International conference for nanomaterials synthesis and characterization (INSC), Kuala Lumpur, Malaysi

    Google Scholar 

  71. Ali J et al (2010) Trapping spatial and temporal soliton system for entangled photon encoding. In: International conference on enabling science and technology, Nanotech Malaysia, Kuala Lumpur, Malaysia

    Google Scholar 

  72. Suwanpayak N et al (2010) Tunable and storage potential wells using microring resonator system for bio-cell trapping and delivery. AIP Conf Proc 1341:289–291

    Google Scholar 

  73. Amiri IS, Gifany D, Ali J (2013) Ultra-short multi soliton generation for application in long distance communication. J Basic Appl Sci Res (JBASR) 3(3):442–451

    Google Scholar 

  74. Amiri IS et al (2012) Ultra-short of pico and femtosecond soliton laser pulse using microring resonator for cancer cells treatment. Quantum Matter 1(2):159–165

    Article  MathSciNet  Google Scholar 

  75. Amiri IS et al (2011) Up and down link of soliton for network communication. In: National science postgraduate conference (NSPC), Universiti Teknologi Malaysia

    Google Scholar 

  76. Ali J et al (2010) MRR quantum dense coding. In: International conference on enabling science and technology, Nanotech Malaysia, KLCC, Kuala Lumpur, Malaysia

    Google Scholar 

  77. Amiri IS, Ali J (2013) Single and multi optical soliton light trapping and switching using microring resonator. Quantum Matter 2(2):116–121

    Article  Google Scholar 

  78. Alavi SE et al (2014) All optical OFDM generation for IEEE802. 11a based on soliton carriers using microring resonators. IEEE Photonics J 6(1)

    Google Scholar 

  79. Amiri IS, Nikoukar A, Alavi SE (2014) Soliton and radio over fiber (RoF) applications. In: Jian A (ed) LAP LAMBERT Academic Publishing, Saarbrücken, Germany

    Google Scholar 

  80. Amiri IS et al (2013) Transmission of data with OFDM technique for communication networks using GHz frequency band soliton carrier. IET Commun

    Google Scholar 

  81. Armstrong J (2009) OFDM for optical communications. J Lightwave Technol 27(3):189–204

    Article  Google Scholar 

  82. Jalil MA et al (2011) All-optical logic XOR/XNOR gate operation using microring and nanoring resonators. Global J Phys Express 1(1):15–22

    Google Scholar 

  83. Amiri IS et al (2010) Controlling center wavelength and free spectrum range by MRR Radii. In: Faculty of science postgraduate conference (FSPGC), Universiti Teknologi Malaysia

    Google Scholar 

  84. Amiri IS, Ali J (2013) Controlling nonlinear behavior of a SMRR for network system engineering. Int J Eng Res Technol (IJERT) 2(2)

    Google Scholar 

  85. Afroozeh A et al (2010) Dark and bright soliton trapping using NMRR. In: International conference on experimental mechanics (ICEM), Kuala Lumpur, Malaysia

    Google Scholar 

  86. Ali J et al (2010) DWDM enhancement in micro and nano waveguide. In: AMN-APLOC international conference, Wuhan, China

    Google Scholar 

  87. Amiri IS (2012) Dark-bright solitons conversion system for secured and long distance optical communication. IOSR J Appl Phys (IOSR-JAP) 2(1):43–48

    Article  Google Scholar 

  88. Amiri IS, Nikoukar A, Ali J (2013) GHz frequency band soliton generation using integrated ring resonator for WiMAX optical communication. Opt Quant Electron

    Google Scholar 

  89. Kouhnavard M et al (2010) Soliton signals and the effect of coupling coefficient in MRR systems. In: Faculty of science postgraduate conference (FSPGC). Universiti Teknologi Malaysia

    Google Scholar 

  90. Shahidinejad A et al (2014) Solitonic pulse generation for inter-satellite optical wireless communication. Quantum Matter 3(2):150–154

    Article  Google Scholar 

  91. Shojaei AA, Amiri IS (2011) DSA for secured optical communication. In: International conference for nanomaterials synthesis and characterization (INSC), Kuala Lumpur, Malaysia

    Google Scholar 

  92. Amiri IS, Ali J (2014) Multiplex and De-multiplex of generated multi optical soliton by MRRs using fiber optics transmission link. Quantum Matter

    Google Scholar 

  93. Yupapin PP et al (2010) New communication bands generated by using a soliton pulse within a resonator system. Circuits Syst 1(2):71–75

    Article  Google Scholar 

  94. Sadegh Amiri I et al (2013) Generation of potential wells used for quantum codes transmission via a TDMA network communication system. Secur Commun Netw 6(11):1301–1309

    Article  Google Scholar 

  95. Amiri IS, Ali J (2012) Generation of nano optical tweezers using an Add/drop interferometer system. In: 2nd postgraduate student conference (PGSC), Singapore

    Google Scholar 

  96. Alavi SE et al (2014) Optical amplification of tweezers and bright soliton using an interferometer ring resonator system. J Comput Theor Nanosci (CTN)

    Google Scholar 

  97. Amiri IS et al (2012) A Study of dynamic optical tweezers generation for communication networks. Int J Adv Eng Technol (IJAET) 4(2):38–45

    Google Scholar 

  98. Ali J et al (2011) Dark soliton array for communication security. In: AMN-APLOC international conference, Wuhan, China

    Google Scholar 

  99. Amiri IS, Alavi SE, Ali J (2013) High capacity soliton transmission for indoor and outdoor communications using integrated ring resonators. Int J Commun Syst

    Google Scholar 

  100. Afroozeh A et al (2010) Optical dark and bright soliton generation and amplification. AIP Conf Proc 1341:259–263

    Google Scholar 

  101. Amiri IS, Ali J (2014) Deform of biological human tissue using inserted force applied by optical tweezers generated By PANDA ring resonator. Quantum Matter 3(1):24–28

    Article  Google Scholar 

  102. Nikoukar A, Amiri IS, Ali J (2013) Generation of nanometer optical tweezers used for optical communication networks. Int J Innovative Res Comput Commun Eng 1(1):77–85

    Google Scholar 

  103. Amiri IS, Ali J (2013) Nano Optical tweezers generation used for heat surgery of a human tissue cancer cells using add/drop interferometer system. Quantum Matter 2(6):489–493

    Article  Google Scholar 

  104. Amiri IS et al (2014) Soliton generation by ring resonator for optical communication application. In: Ramirez J (ed). Nova Science Publishers, Hauppauge, NY, 11788, USA

    Google Scholar 

  105. Ali J et al (2010) Novel system of fast and slow light generation using micro and nano ring resonators. In: International Conference ICAMN, Prince Hotel, Kuala Lumpur, Malaysia

    Google Scholar 

  106. Afroozeh A et al (2012) Simulation of soliton amplification in micro ring resonator for optical communication. Jurnal Teknologi (Sci Eng) 55:271–277

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iraj Sadegh Amiri .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Sadegh Amiri, I., Alavi, S.E., Mahdaliza Idrus, S. (2015). Introduction of Fiber Waveguide and Soliton Signals Used to Enhance the Communication Security. In: Soliton Coding for Secured Optical Communication Link. SpringerBriefs in Applied Sciences and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-287-161-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-287-161-9_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-287-160-2

  • Online ISBN: 978-981-287-161-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics