Skip to main content

Graphics Native Approach to Identifying Surface Atoms of Macromolecules

  • Chapter
  • First Online:
GPU Computing and Applications
  • 2540 Accesses

Abstract

Classification of “surface atoms” or “interior atoms” of proteins or other macromolecules is significant for many biochemical tasks, particularly for molecular docking. We present a simple and easy-to-implement algorithm for identifying surface atoms of macromolecules from interior atoms. Unlike existing methods that are based on geometry computations, our approach takes the advantage of graphics hardware, and most of the computations are fulfilled with graphics processing unit (GPU). The algorithm can be easily incorporated within visualization applications for macromolecules to enable the removal of interior atoms from a macromolecular structure, thus simplifying the graphics display and manipulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Richards, F.M.: Areas, volumes, packing, and protein structure. Ann. Rev. Biophys. And Bioeng. 6, 151–176 (1977)

    Article  Google Scholar 

  2. Leach, A.R.: Molecular Modelling: Principles and Applications, 2nd edn. Essex, Pearson Education EMA (2001)

    Google Scholar 

  3. Connolly, M.L.: Analytical molecular surface calculation. J. Appl. Crystallogr. 16, 548–558 (1983)

    Article  Google Scholar 

  4. Lee, B., Richards, F.M.: Interpretation of protein structures: estimation of static accessibility. J. Mol. Biol. 55, 379–400 (1971)

    Article  Google Scholar 

  5. Hermann, R.B.: Theory of hydrophobic bonding. II. The correlation of hydrocarbon solubility in water with solvent cavity surface area. J. Phys. Chem. 76, 2754–2759 (1972)

    Article  Google Scholar 

  6. Quarendon, P.: A general approach to surface modeling applied to molecular graphics. J. Mol. Graph. 2, 91–95 (1984)

    Article  Google Scholar 

  7. Connolly, M.L.: Depth buffer algorithms for molecular modeling. J. Mol. Graph. 3, 19–24 (1985)

    Article  Google Scholar 

  8. Connolly, M.L.: Plotting protein surfaces. J. Mol. Graph. 4, 93–96 (1986)

    Article  Google Scholar 

  9. Ooi, T., Oobatake, M., Nemethy, G., Scheraga, H.A.: Accessible surface areas as measure of the thermodynamic parameters of hydration of peptides. Proc. Natl. Acad. Sci. USA 84, 3086–3090 (1987)

    Article  Google Scholar 

  10. Chapman, M.S.: Mapping the surface properties of macromolecules. Protein Sci. 2, 459–469 (1993)

    Article  Google Scholar 

  11. Nicholls, A., Bharadwaj, R., Honi, B.: GRASP: graphical representation and analysis of surface properties. Biophy. J. 64, A166 (1993)

    Google Scholar 

  12. Heiden, W., Moeckel, G., Brickmann, J.: A new approach to analysis and display of local lipophilicity/hydrophilicity mapped on molecular surfaces. J. Comput. Aided Mol. Des. 7, 503–514 (1993)

    Article  Google Scholar 

  13. Duncan, B.S., Macke, T.J., Olso, A.J.: Biomolecular visualization using AVS. J. Mol. Graph. 13(5), 271–282 (1995)

    Article  Google Scholar 

  14. Altman, R.B., Hughes, C., Gerstein, M.B.: Methods for displaying macromolecular structural uncertainty: application to the globins. J. Mol. Graph. 13, 142–152 (1995)

    Article  Google Scholar 

  15. Janin, J., Chothi, C.: Surface, subunit interfaces and interior of oligomeric proteins. J. Mol. Biol. 204, 155–164 (1988)

    Article  Google Scholar 

  16. Zielenkiewicz, P., Rabczenko, A.: Protein-protein recognition: method for finding complementary surfaces of interacting proteins. J. Theor. Biol. 111, 17–30 (1984)

    Article  Google Scholar 

  17. Santavy, M., Kypr, J.: A fast computer algorithm for finding an optimum geometrical interaction of two macromolecules. J. Mol. Graph. 2, 47–49 (1984)

    Article  Google Scholar 

  18. Cherfils, J., Janin, J.: Protein docking algorithms: simulating molecular recognition. Current Opinion in Structural Biology 3, 265–269 (1993)

    Article  Google Scholar 

  19. Kuntz, I.D.: Structure-based strategies for drug design and discovery. Science 257, 1078–1082 (1992)

    Article  Google Scholar 

  20. Navia, M.A., Murcko, M.A.: Use of structural information in drug design. Curr. Opin. Struct. Biol. 2(2), 202–210 (1992)

    Article  Google Scholar 

  21. Bugg, C.E., Carson, W.M., Montgomery, J.A.: Drugs by Design. Scientific American 269(6), 92–98 (1993)

    Article  MathSciNet  Google Scholar 

  22. Murcko, M.A., Rotstein, S.H.: GenStar: a program for de novo drug design. J. Comput. Aided Mol. Des. 7, 23–43 (1993)

    Article  Google Scholar 

  23. Verlinde, C.L.M.J., Hol, W.G.J.: Structure-based drug design: progress, results and challenges. Structure 2, 577–587 (1994)

    Article  Google Scholar 

  24. Whittle, P.J., Blundell, T.L.: Protein structure-based drug design. Ann. Rev. Biophys. Biomol. Struct. 23, 349–375 (1994)

    Article  Google Scholar 

  25. Jackson, R.M., Sternberg, M.J.E.: Protein surface-area defined. Nature 366(6456), 638 (1993)

    Article  Google Scholar 

  26. Deanda, F., Pearlman, R.S.: A novel approach for identifying the surface atoms of macromolecules. J. Mol. Graph. Model. 20, 415–425 (2002)

    Article  Google Scholar 

  27. Pearlman, R.S.: Molecular surface area and volume: their calculation and use in predicting solubilities and free energies of desolvation. In: Dunn III, W.J., Block, J.H., Pearlman, R.S. (eds.) Partition Coefficient: Determination and Estimation, pp. 3–20. Pergamon Press, New York, NY (1986)

    Google Scholar 

  28. Savol3: surface & volume algorithms, http://www.chem.ac.ru/Chemistry/Soft/SAVOL3.en.html. Last visit 4 Oct 2003

  29. Bash, P.A., Pattabiraman, N., Huang, C., Ferrin, T.E., Langridge, R.: van der Waals surfaces in molecular modeling: implementation with real-time computer-graphics. Science 222, 1325–1327 (1983)

    Article  Google Scholar 

  30. Brusniak, M.-Y.K.: Development and application of software for CADD. Ph.D. Dissertation, The University of Texas, Austin (Chapter 2) (1996)

    Google Scholar 

  31. Baxter, W.V., III, Sud, A., Govindaraju, N.K., Manocha, D.: GigaWalk: interactive walkthrough of complex environment. UNC-CH Technical Report TR02-013 (2002)

    Google Scholar 

  32. Govindaraju, N.K., Sud, A., Yoon, S.E., Manocha, D.: Parallel occlusion culling for interactive walkthroughs using multiple GPUs. UNC Computer Science Technical Report TR02-027 (2002)

    Google Scholar 

  33. Karabassi, E.A., Papaioannou, G., Theoharis, T.: A fast depth-buffer-based voxelization algorithm. J. Graph. Tools 4(4), 5–10 (1999)

    Article  Google Scholar 

  34. Lin, M., Manocha, D.: Interactive geometric computations using graphics hardware. In: Siggraph’2002 course notes (2002)

    Google Scholar 

  35. Tomas, A.M., Eric, H.: Real-Time Rendering, 2nd edn. A.K. Peters Ltd, Natick, MA (2002)

    Google Scholar 

  36. McReynolds, T.: Programming with OpenGL: Advanced Rendering. In: SIGGRAPH’96 course notes (1996)

    Google Scholar 

  37. GLUT specification, http://www.opengl.org/developers/documentation/glut/index.html. Last visit 4 Oct 2003

  38. Protein Data Bank, http://www.rcsb.org/pdb/. Last visit 4 Oct 2003

  39. Colberg, P. H., Höfling, F.: Highly accelerated simulations of glassy dynamics using GPUs: Caveats on limited floating-point precision. Comp. Phys. Comm. 182 (5), 1120–1129, (2011)

    Google Scholar 

  40. Ufimtsev, I.S., Martinez, T.J.: Graphical processing units for quantum chemistry. Comp. Sci. Eng. 10(6), 26–34 (2011)

    Article  Google Scholar 

  41. Pronk, S., Larsson, P., Pouya, I., Bowman, G.R., Haque, I.S., Beauchamp, K., Hess, B., Pande, V.S., Kasson, P.M., Lindahl, E.: Copernicus: a new paradigm for parallel adaptive molecular dynamics. In: 2011 International Conference for High Performance Computing, Networking, Storage and Analysis, pp. 1–10, 12–18 (2011)

    Google Scholar 

  42. Dror, R.O., Dirks, R.M., Grossman, J.P., Xu, H., Shaw, D.E.: Biomolecular simulation: a computational microscope for molecular biology. Annu. Rev. Biophys. 41, 429–452 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the partial funding support from Singapore MOE Tier 1 (RG 10/12).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiyu Cai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Wan, H., Guan, Y., Cai, Y. (2015). Graphics Native Approach to Identifying Surface Atoms of Macromolecules. In: Cai, Y., See, S. (eds) GPU Computing and Applications. Springer, Singapore. https://doi.org/10.1007/978-981-287-134-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-287-134-3_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-287-133-6

  • Online ISBN: 978-981-287-134-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics