Skip to main content

Smoothed Particle Hydrodynamics Applied to Cartilage Deformation

  • Chapter
  • First Online:

Abstract

Modelling of the cartilage within the acetabulum is necessary for determination of stresses in preoperative simulation of femoral acetabular impingement (FAI), a condition that is considered a primary cause of osteoarthritis. Presented is a previously proven method for elastic solid deformation using smoothed particle hydrodynamics (SPH). Smoothed particle hydrodynamics is a mesh-free method that has advantages in computational speed and accuracy over other graphical methods and as such is attractive for medical simulations that require high degrees of precision and real-time operability. A complete formulation of the method of polar decomposition as devised for smoothed particle hydrodynamics is outlined with the inclusion of a corotational formulation for accurate rotation handling. Modifications to the existing method include boundary and collision handling using an adapted virtual particle method, as well as an algorithm for parallel implementation on the GPU using NVIDIA’s CUDA framework. The method is verified through testing with a range of material parameters within the provided elastic solid framework. Employing CUDA for calculations is found to dramatically increase the computational speed of the simulation. The results of an indenter analysis of cartilage modelled as a purely elastic solid are presented and evaluated, with the conclusion that with further refinement the presented method is promising for use in cartilage simulations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Martin, D.E., Tashman, S.: The biomechanics of femoroacetabular impingement. Oper. Tech. Orthop. 20, 248–254 (2010)

    Article  Google Scholar 

  2. Tannast, M., Goricki, D., Beck, M., Murphy, S.B., Siebenrock, K.A.: Hip damage occurs at the zone of femoroacetabular impingement. Clin. Orthop. Relat. Res. 466, 273–280 (2008)

    Article  Google Scholar 

  3. Krekel, P.R., Vochteloo, A.J.H., Bloem, R.M., Nelissen, R.G.: Femoroacetabular impingement and its implications on range of motion: a case report. J. Med. Case Rep. 5, 143 (2011)

    Article  Google Scholar 

  4. Asheesh, B., et al.: Surgical treatment of femoroacetabular impingement improves hip kinematics: a computer-assisted model. Am. J. Sports Med. 39, 43S–49S (2011)

    Article  Google Scholar 

  5. Terzopoulos, D., Platt, J., Barr, A., Fleischer, K.: Elastically deformable models. Com Graph 21, 205–214 (1987)

    Article  Google Scholar 

  6. Molino, N., Bridson, R., Teran, J., Fedkiw, R.: A crystalline, red green strategy for meshing highly deformable objects with tetrahedra. In: Proceedings of 12th IMR 103-114 (2003)

    Google Scholar 

  7. Maciel, A., Boulic, R., Thalmann, D.: Deformable tissue parameterized by properties of real biological tissue. Surg. Sim. Soft Tissue Model 2673, 74–87 (2003)

    Article  Google Scholar 

  8. Lloyd, B.A., Szekely, G., Harders, M.: Identification of spring parameters for deformable object simulation. IEEE Trans. Vis. Comp. Graph. 13, 1081–1094 (2007)

    Article  Google Scholar 

  9. James, D.L., Pai, D.K.: ArtDefo: accurate real time deformable objects. SIGGRAPH 1999, 65–72 (1999)

    Google Scholar 

  10. MeieMollemans, W., Schutyser, F., Najmi, N., Maes, F., Suetens, P.: Predicting soft tissue deformations for a maxillofacial surgery planning system: from computational strategies to a complete clinical validation. Med. Image Anal. 11, 282–301 (2007)

    Article  Google Scholar 

  11. Cotin, S., Delingette, H., Ayache, N.: A hybrid elastic model allowing real-time cutting, deformations and force-feedback for surgery training and simulation. In: Proceedings on Computer Animation, pp, 70–81 (2000)

    Google Scholar 

  12. Niroomandi, S., Alfaro, I., Cueto, E., Chinesta, F.: Accounting for large deformations in real-time simulations of soft tissues based on reduced-order models. Comput. Methods Programs Biomed. 105, 1–12 (2012)

    Article  Google Scholar 

  13. Bro-Nielsen, M.: Finite element modeling in surgery simulation. Proc. IEEE 86, 490–503 (1998)

    Article  Google Scholar 

  14. Cotin, S., Delingette, H., Ayache, N.: Real-time elastic deformations of soft tissues for surgery simulation. IEEE Trans. Vis. Comput. Graph 5, 62–73 (1999)

    Article  Google Scholar 

  15. Meier, U., López, O., Monserrat, C., Juan, M.C., Alcañiz, M.: Real-time deformable models for surgery simulation: a survey. Comput. Methods Programs Biomed. 77, 183–197 (2005)

    Article  Google Scholar 

  16. Monaghan, J.J.: Smoothed Particle Hydrodynamics. Rep. Prog. Phys. 68, 1703–1759 (2005)

    Article  MathSciNet  Google Scholar 

  17. Hieber, S.E., Koumoutsakos, P.: A Lagrangian particle method for the simulation of linear and nonlinear elastic models of soft tissue. J. Comput. Phys. 227, 9195–9215 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  18. Müller, M., Chentanez, N.: Solid simulation with oriented particles. ACM Trans. Graph. 30(92), 1–9 (2011)

    Article  Google Scholar 

  19. Gingold, R.A., Monaghan, J.J.: Smoothed particle hydrodynamics—theory and application to non-spherical stars. Mon. Not. R. Astron. Soc. 181, 375–389 (1977)

    Article  MATH  Google Scholar 

  20. Müller, M., Charypar, D., Gross, M.: Particle-Based Fluid Simulation for Interactive Applications. In: Eurograph/SIGGRAPH Symposium on Computer Animation, pp. 154–159 (2003)

    Google Scholar 

  21. Bao, K., Zhang, H., Zheng, L., Wu, E.: Pressure corrected SPH for fluid animation. Comput. Animat. Virtual Worlds 20, 311–320 (2009)

    Article  Google Scholar 

  22. Lenaerts, T., Adams, B., Dutré, P.: Porous Flow in Particle-Based Fluid Simulations. ACM Trans. Graph. 49, 1–8 (2008)

    Article  Google Scholar 

  23. Cleary, P.W., Das, R.: The potential for SPH modelling of solid deformation and fracture. In: IUTAM Symposium on Theoretical, Computational and Modelling Aspects of Inelastic Media, pp. 287–296 (2008)

    Google Scholar 

  24. Gray, J.P., Monaghan, J.J., Swift, R.P.: SPH elastic dynamics. Comp. Methods Appl. Mech. Eng. 190, 6641–6662 (2001)

    Article  MATH  Google Scholar 

  25. Qin, J., Pang, W.M., Nguyen, B.P., Ni, D., Chui, C.K.: Particle-based Simulation of blood flow and vessel wall interactions in virtual surgery. In: SolCT, pp. 128–133 (2010)

    Google Scholar 

  26. Mesit, J., Guha, R.K.: Experimenting with real time simulation parameters for fluid model of soft bodies. In: Proceedings of SpringSim, pp. 1–8 (2010)

    Google Scholar 

  27. Hieber, S.E., Walther, J.H., Koumoutsakos, P.: Remeshed smoothed particle hydrodynamics simulation of the mechanical behavior of human organs. Technol. Health Care 12, 305–314 (2004)

    Google Scholar 

  28. Solenthaler, B., Schläfli, J., Pajarola, R.: A unified particle model for fluid-solid interactions. Comput. Animat. Virtual Worlds 18, 69–82 (2007)

    Article  Google Scholar 

  29. Becker, M., Ihmsen, M., Teschner, M.: Corotated SPH for deformable solids. In: Proceedings of the 5th Eurographics Conference on Natural Phenomena, pp. 27–34 (2009)

    Google Scholar 

  30. Mow, V.C., Holmes, M.H., Lai, M.W.: Fluid transport and mechanical properties of articular cartilage: a review. J. Biomech. 17, 377–394 (1984)

    Article  Google Scholar 

  31. Korhonen, R.K., et al.: Fibril reinforced poroelastic model predicts specifically mechanical behavior of normal, proteoglycan depleted and collagen degraded articular cartilage. J. Biomech. 36, 1373–1379 (2003)

    Article  Google Scholar 

  32. Wilson, W., Huyghe, J.M., van Donkelaar, C.C.: Depth-dependent compressive equilibrium properties of articular cartilage explained by its composition. Biomech. Model. Mechanobiol. 6, 43–53 (2007)

    Article  Google Scholar 

  33. Schmedding, R., Teschner, M.: Inversion handling for stable deformable modeling. Vis. Comp. 24, 625–633 (2008)

    Article  Google Scholar 

  34. Jin, H., Lewis, J.L.: Determination of Poisson’s ratio of articular cartilage by indentation using different-sized indenters. J. Biomech. Eng. 126, 138–145 (2004)

    Article  Google Scholar 

  35. Müller, M. et al.: Point based animation of elastic, plastic and melting objects. In: Proceedings of SIGGRAPH Symposium on Computer Animation, pp. 141–151 (2004)

    Google Scholar 

  36. Liu, M.B., Liu, G.R.: Smoothed particle hydrodynamics (SPH): an overview and recent developments. Arch. Comput. Methods Eng. 17, 25–76 (2010)

    Article  MathSciNet  Google Scholar 

  37. Desbrun, M., Gascuel, M.P.: Smoothed particles: A new paradigm for animating highly deformable bodies. In: Proceedings of EG Workshop on Animation and Simulation, pp. 61–76 (1996)

    Google Scholar 

  38. Lu, X.L., Wan, L.Q., Guo, X.E., Mow, V.C.: A linearized formulation of triphasic mixture theory for articular cartilage, and its application to indentation analysis. J. Biomech. 43, 673–679 (2010)

    Article  Google Scholar 

  39. Macklin, M., Müller, M.: Position based fluids. ACM Trans. Graph. 32(104), 1–5 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip Boyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Boyer, P., LeBlanc, S., Joslin, C. (2015). Smoothed Particle Hydrodynamics Applied to Cartilage Deformation. In: Cai, Y., See, S. (eds) GPU Computing and Applications. Springer, Singapore. https://doi.org/10.1007/978-981-287-134-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-287-134-3_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-287-133-6

  • Online ISBN: 978-981-287-134-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics